CONTEMPLATION OF SYMBIOTIC MICROBIAL BIOFILMS IN WASTEWATER TREATMENT

Authors

  • JUHI SHARMA School of Basic and Applied Sciences, Eklavya University, Damoh
  • PAWAN KUMAR JAIN School of Basic and Applied Sciences, Eklavya University, Damoh
  • VAISHALI VISHWAKARMA St. Aloysius College, Jabalpur
  • ANKITA SHRIVASTAVA St. Aloysius College, Jabalpur

DOI:

https://doi.org/10.22159/ijcpr.2021v13i6.1921

Keywords:

Bacteria, Biofilm formation, Wastewater treatment, Fouling membrane, Bioreactor

Abstract

State of symbiosis is created among the species that are found in naturally existing biofilms. Biofilm formation provides protection against toxic shocks, mechanical stress, and predation. Biofilm can play an important role in wastewater treatment technologies and on the other hand could also lead to plague water. Biofilm-based treatments have been traditionally used for the treatment of water but the recent development in the stream has boosted the use of biofilm in various strategies of waste water treatment especially for strategies related to BOD and nutrients. However, the blueprint and execution of this idea is still being worked on due to the problems which arise in the implementation such as corroding pipes, increasing head loss, allowing pathogens to persist in distribution systems, and fouling membrane processes. Design for choice of species for biofilm processes in particular techniques is important wastewater treatment. All these data are essential to develop the performance, effectiveness and constancy of biofilm-based wastewater treatment strategies.

Downloads

Download data is not yet available.

References

Hentzer M, Eberl L, Givskov M. Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms. 2005;2(1):37-61. doi: 10.1017/S1479050505001699.

Rajan S, Saiman L. Pulmonary infections in patients with cystic fibrosis. Semin Respir Infect. 2002;17(1):47-56. doi: 10.1053/srin.2002.31690, PMID 11891518.

Abdel-Aziz SM, AA. Bacterial biofilm: dispersal and inhibition strategies. Scholarena J Biotechnol 2014;1(1):105. doi: 10.18875/2375-6713.1.105.

Hoiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PO, Molin S, Givskov M, Tolker Nielsen T, Bjarnsholt T. The clinical impact of bacterial biofilms. Int J Oral Sci. 2011;3(2):55-65. doi: 10.4248/IJOS11026, PMID 21485309.

Pavithra D, Doble M. Biofilm formation, bacterial adhesion and host response on polymeric implants--issues and prevention. Biomed Mater. 2008;3(3):034003. doi: 10.1088/1748-6041/3/3/034003, PMID 18689922.

Trentin DS, Giordani RB, Macedo AJ. Pathogenic bacterial biofilms: general aspects, clinical importance and combat strategies. Rev Liberato. 2013;14:113-238.

Schmidt J, Musken M, Becker T, Magnowska Z, Bertinetti D, Moller S, Zimmermann B, Herberg FW, Jansch L, Haussler S. The pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling. PLOS ONE. 2011;6(3):e18184. doi: 10.1371/journal.pone.0018184. PMID 21445368.

Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002;56:187-209. doi: 10.1146/annurev.micro.56.012302.160705, PMID 12142477.

Kuchma SL, O’Toole GA. Surface-induced and biofilm-induced changes in gene expression. Curr Opin Biotechnol. 2000;11(5):429-33. doi: 10.1016/s0958-1669(00)00123-3, PMID 11024358.

Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167-93. doi: 10.1128/CMR.15.2.167-193.2002, PMID 11932229.

Naves P, del Prado G, Huelves L, Rodriguez Cerrato V, Ruiz V, Ponte MC, Soriano F. Effects of human serum albumin, ibuprofen and N-acetyl-L-cysteine against biofilm formation by pathogenic Escherichia coli strains. J Hosp Infect. 2010;76(2):165-70. doi: 10.1016/j.jhin.2010.05.011. PMID 20615578.

Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623-33. doi: 10.1038/nrmicro2415, PMID 20676145.

Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL. Solutions to the public goods dilemma in bacterial biofilms. Curr Biol. 2014;24(1):50-5. doi: 10.1016/j.cub.2013.10.030, PMID 24332540.

Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881-90. doi: 10.3201/eid0809.020063, PMID 12194761.

Baselga R, Albizu I, Amorena B. Staphylococcus aureus capsule and slime as virulence factors in ruminant mastitis. A review. Vet Microbiol. 1994;39(3-4):195-204. doi: 10.1016/0378-1135(94)90157-0, PMID 8042268.

Hong SH, Lee J, Wood TK. Engineering global regulator Hha of Escherichia coli to control biofilm dispersal. Microb Biotechnol. 2010;3(6):717-28. doi: 10.1111/j.1751-7915.2010.00220.x, PMID 21255366.

Kolodkin Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick RD. D-amino acids trigger biofilm disassembly. Science. 2010;328(5978):627-9. doi: 10.1126/science.1188628, PMID 20431016.

Hall Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95-108. doi: 10.1038/nrmicro821, PMID 15040259.

Prakash B, Veeregowa BM, Krishnappa G. Biofilms: a survival strategy of bacteria. Curr Sci. 2003;85(9):1299-307.

Simoes M, Pereira MO, Sillankorva S, Azeredo J, Vieira MJ. The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms. Biofouling. 2007;23(3-4):249-58. doi: 10.1080/08927010701368476, PMID 17653934.

Xiong Y, Liu Y. Biological control of microbial attachment: a promising alternative for mitigating membrane biofouling. Appl Microbiol Biotechnol. 2010;86(3):825-37. doi: 10.1007/s00253-010-2463-0, PMID 20169341.

Zhao K, Tseng BS, Beckerman B, Jin F, Gibiansky ML, Harrison JJ, Luijten E, Parsek MR, Wong GCL. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature. 2013;497(7449):388-91. doi: 10.1038/nature12155, PMID 23657259.

Das T, Sehar S, Manefield M. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ Microbiol Rep. 2013;5(6):778-86. doi: 10.1111/1758-2229.12085, PMID 24249286.

Mulcahy H, Charron Mazenod L, Lewenza S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLOS Pathog. 2008;4(11):e1000213. doi: 10.1371/journal.ppat.1000213. PMID 19023416.

Kerchove AJ, Elimelech M. Calcium and magnesium cations enhance the adhesion of motile and nonmotile Pseudomonas aeruginosa on alginate films. Langmuir. 2008;24(7):3392-9. doi: 10.1021/la7036229, PMID 18302437.

Das T, Sehar S, Koop L, Wong YK, Ahmed S, Siddiqui KS, Manefield M. Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation. PLOS ONE. 2014;9(3):e91935. doi: 10.1371/journal.pone.0091935. PMID 24651318.

Sarkisova S, Patrauchan MA, Berglund D, Nivens DE, Franklin MJ. Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. J Bacteriol. 2005;187(13):4327-37. doi: 10.1128/JB.187.13.4327-4337.2005, PMID 15968041.

Lindsay D, von Holy A. Bacterial biofilms within the clinical setting: what healthcare professionals should know. J Hosp Infect. 2006;64(4):313-25. doi: 10.1016/j.jhin.2006.06.028, PMID 17046102.

Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563-75. doi: 10.1038/nrmicro.2016.94, PMID 27510863.

Roilides E, Simitsopoulou M, Katragkou A, Walsh TJ. How biofilms evade host defenses. Microbiol Spectr. 2015;3(3):1-10. doi: 10.1128/microbiolspec.MB-0012-2014, PMID 26185085.

Domenech M, Ramos Sevillano E, Garcia E, Moscoso M, Yuste J. Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infect Immun. 2013;81(7):2606-15. doi: 10.1128/IAI.00491-13, PMID 23649097.

Stewart PS. Antimicrobial tolerance in biofilms. Microbiol Spectr. 2015;3(3):1-30. doi: 10.1128/microbiolspec.MB-0010-2014.

Harms H, Schlosser D, Wick LY. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol. 2011;9(3):177-92. doi: 10.1038/nrmicro2519, PMID 21297669.

Naghdi M, Taheran M, Brar SK, Kermanshahi Pour A, Verma M, Surampalli RY. Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environ Pollut. 2018;234:190-213. doi: 10.1016/j.envpol.2017.11.060. envpol.2017.11.060.

Siddiquee S, Rovina K, Azad SA. Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microb Biochem Technol 2005;07(6):384-93. doi: 10.4172/1948-5948.1000243.

Zhang H, Feng J, Chen S, Li B, Sekar R, Zhao Z, Jia J, Wang Y, Kang P. Disentangling the drivers of diversity and distribution of fungal community composition in wastewater treatment plants across spatial scales. Front Microbiol. 2018;9:1291. doi: 10.3389/fmicb.2018.01291, PMID 29967600.

Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol. 2011;9(2):109-18. doi: 10.1038/nrmicro2475, PMID 21189476.

Beauvais A, Muller FM. Biofilm formation in Aspergillus fumigatus. In: Latge JP, Steinbach WJ, editors. Aspergillus fumigatus and aspergillosis. Washington, DC: ASM Press; 2009. p. 149–57.

Martinez LR, Casadevall A. Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol. 2007;73(14):4592-601. doi: 10.1128/AEM.02506-06, PMID 17513597.

Di Bonaventura G, Pompilio A, Picciani C, Iezzi M, D’Antonio D, Piccolomini R. Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Agents Chemother. 2006;50(10):3269-76. doi: 10.1128/AAC.00556-06, PMID 17005804.

Davis LE, Cook G, Costerton JW. Biofilm on ventriculo-peritoneal shunt tubing as a cause of treatment failure in Coccidioidal meningitis. Emerg Infect Dis. 2002;8(4):376-9. doi: 10.3201/eid0804.010103, PMID 11971770.

Cushion MT, Collins MS, Linke MJ. Biofilm formation by Pneumocystis spp. Eukaryot Cell. 2009;8(2):197-206. doi: 10.1128/EC.00202-08, PMID 18820078.

Tomaras AP, Dorsey CW, Edelmann RE, Actis LA. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology (Reading). 2003;149(12):3473-84. doi: 10.1099/mic.0.26541-0, PMID 14663080.

Bogino PC, Oliva Mde L, Sorroche FG, Giordano W. The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci. 2013;14(8):15838-59. doi: 10.3390/ijms140815838, PMID 23903045.

Silva VO, Soares LO, Silva Junior A, Mantovani HC, Chang YF, Moreira MA. Biofilm formation on biotic and abiotic surfaces in the presence of antimicrobials by Escherichia coli Isolates from cases of bovine mastitis. Appl Environ Microbiol. 2014;80(19):6136-45. doi: 10.1128/AEM.01953-14, PMID 25063668.

Costa Orlandi CB, Sardi JCO, Pitangui NS, De Oliveira HC, Scorzoni L, Galeane MC, Medina Alarcon KP, Melo WCMA, Marcelino MY, Braz JD, Fusco Almeida AM, Mendes Giannini MJS. Fungal biofilms and polymicrobial diseases. J Fungi (Basel). 2017;3(2):22. doi: 10.3390/jof3020022, PMID 29371540.

Raghupathi PK, Liu W, Sabbe K, Houf K, Burmølle M, Sørensen SJ. Synergistic interactions within a multispecies biofilm enhance individual species protection against grazing by a pelagic protozoan. Front Microbiol. 2017;8:2649. doi: 10.3389/fmicb.2017.02649, PMID 29375516.

Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening Roser A, Koops HP, Wagner M. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and nitrospira-like bacteria as dominant populations. Appl Environ Microbiol. 1998;64(8):3042-51. doi: 10.1128/AEM.64.8.3042-3051.1998, PMID 9687471.

Nout MJR, Rombouts FM. Recent developments in tempe research. J Appl Bacteriol 1990;69(5):609-33. doi: 10.1111/j.1365-2672.1990.tb01555.x.

Quijano G, Arcila JS, Buitroón G. Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment. Biotechnol Adv. 2017;35(06):772-81. doi: 10.1016/j.biotechadv.2017.07.003, PMID 28694179.

Kimura K, Yamato N, Yamamura H, Watanabe Y. Membrane fouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater. Environ Sci Technol. 2005;39(16):6293-9. doi: 10.1021/es0502425, PMID 16173595.

Wang YQ, Wang T, Su YL, Peng FB, Wu H, Jiang ZY. Remarkable reduction of irreversible fouling and improvement of the permeation properties of poly (ether sulfone) ultrafiltration membranes by blending with pluronic F127. Langmuir. 2005;21(25):11856-62. doi: 10.1021/la052052d, PMID 16316125.

Hirani ZM, Bukhari Z, Oppenheimer J, Jjemba P, LeChevallier MW, Jacangeloani JG. Impact of MBR cleaning and breaching on passage of selected microorganisms and subsequent inactivation by free chlorine. Water Res. 2014;57:14313-24. doi: 10.1016/j.watres.2014.03.038, PMID 24735904.

McBain AJ. Chapter 4: In vitro biofilm models: an overview. Adv Appl Microbiol. 2009;69:99-132. doi: 10.1016/S0065-2164(09)69004-3, PMID 19729092.

Vert M, Doi Y, Hellwich KH, Hess M, Hodge P, Kubisa P, Rinaudo M, Schué F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem. 2012;84(2):377-410, doi: 10.1351/PAC-REC-10-12-04.

Ateia M. In-situ biological water treatment technologies for environmental remediation: a review. J Bioremediat Biodegrad 2015;07(3). doi: 10.4172/2155-6199.1000348.

Amulya K, Dahiya Shikha MSV. Building a bio-based economy through waste remediation: innovation towards a sustainable future. Bioremediation Bioeconomy. Netherlands: Elsevier; 2016. p. 497-521. doi: 10.1016/B978-0-12-802830-8.00019-8.

Singh R, Paul D, Jain RK. Biofilms: Iimplications in bioremediation. Trends Microbiol. 2006;14(9):389-97. doi: 10.1016/j.tim.2006.07.001.tim.2006.07.001. PMID 16857359.

Crist BV. XPS handbook: elements and native oxides. New York: John Wiley and Sons; 2000. p. 458.

Adetunji VO, Odetokun IA. Assessment of biofilm in E. coli O157:H7 and salmonella strains: influence of cultural conditions. Am J Food Technol. 2012;7(10):582-95. doi: 10.3923/ajft.2012.582.595.

Pettit RK, Weber CA, Kean MJ, Hoffmann H, Pettit GR, Tan R, Franks KS, Horton ML. Microplate alamar blue assay for staphylococcus epidermidis biofilm susceptibility testing. Antimicrob Agents Chemother. 2005;49(7):2612-7. doi: 10.1128/AAC.49.7.2612-2617.2005, PMID 15980327.

Cloete TE, Brozel VS, Von Holy AV. Practical aspects of biofouling control in industrial water systems. International Biodeterioration Biodegradation. 1992;29(3-4):299-341. doi: 10.1016/0964-8305(92)90050-X.

Naz I, Batool SA, Ali N, Khatoon N, Atiq N, Hameed A, Ahmed S. Monitoring of growth and physiological activities of biofilm during succession on polystyrene from activated sludge under aerobic and anaerobic conditions. Environmental Monitoring and Assessment. 2013;185(8):6881-92. doi: 10.1007/s10661-013-3072-z, PMID 23361646.

Khatoon N, Naz I, Ali MI, Ali N, Jamal A, Hameed A, Ahmed S. Bacterial succession and degradative changes by biofilm on plastic medium for wastewater treatment. J Basic Microbiol. 2014;54(7):739-49. doi: 10.1002/jobm.201300162, PMID 24115187.

Naz I, Sehaer S, Perveen I, Saroj DP, Ahmed S. Physiological activities associated with biofilm growth in attached and suspended growth bioreactors under aerobic and anaerobic conditions. Environ Technol. 2015;36(13-16):1657-71. doi: 10.1080/09593330.2014.1003614, PMID 25609155.

Arnold JW, Bailey GW. Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study. Poult Sci. 2000;79(12):1839-45. doi: 10.1093/ps/79.12.1839, PMID 11194050.

Baum MM, Kainovic A, O'’Keeffe T, Pandita R, McDonald K, Wu S, Webster P. Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil. BMC Microbiol. 2009;9:1–13103. doi: 10.1186/1471-2180-9-103, PMID 19460161.

Holling N, Dedi C, Jones CE, Hawthorne JA, Hanlon GW, Salvage JP, Patel BA, Barnes LM, Jones BV. Evaluation of environmental scanning electron microscopy for analysis of Proteus mirabilis crystalline biofilms in situ on urinary catheters. FEMS Microbiol Lett. 2014;355(1):20-7. doi: 10.1111/1574-6968.12451, PMID 24786314.

Hung C, Zhou Y, Pinkner JS, Dodson KW, Crowley JR, Heuser J, Chapman MR, Hadjifrangiskou M, Henderson JP, Hultgren SJ. Escherichia coli biofilms have an organized and complex extracellular matrix structure. mBIOio. 2013;4(5):1–10e00645-13. doi. org/10.1128/mBio.00645-13doi: 10.1128/mBio.00645-13, PMID 24023384.

DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microbial Ecology. 2007;53(3):371-83. doi: 10.1007/s00248-006-9134-9, PMID 17334858.

Sanz JL, Kochling T, Sanz JL, Kochling T. Molecular biology techniques used in wastewater treatment: an overview. Process Biochemistry. 2007;42(2):119-33. doi: 10.1016/j.procbio.2006.10.003.

Rastogi G, Sani RK. Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad, editors. Microbes and microbial technology: agricultural and environmental applications. New York: Springer; 2011. p. 29-57.

Thies JE. Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Science Society America J. 2007;71(2):579-91. doi: 10.2136/sssaj2006.0318.

Hedrick DB, Peacock A, Stephen JR, Macnaughton SJ, Bruggemann J, White DC. Measuring soil microbial community diversity using polar lipid fatty acid and denaturing gradient gel electrophoresis data. J Microbiol Methods. 2000;41(3):235-48. doi: 10.1016/s0167-7012(00)00157-3, PMID 10958969.

Malik S, Beer M, Megharaj M, Naidu R. The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ International. 2008;34(2):265-76. doi: 10.1016/j.envint.2007.09.001, PMID 18083233.

Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied Environmental Microbiology. 1990;56(6):1919-25. doi: 10.1128/aem.56.6.1919-1925.1990, PMID 2200342.

Moter A, Gobel UB. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods. 2000;41(2):85-112. doi: 10.1016/s0167-7012(00)00152-4, PMID 10991623.

Zwolinski MD. DNA sequencing: strategies for soil microbiology. Soil Science Society of America Journal. 2007;71(2):592-600. doi: 10.2136/sssaj2006.0125.

Fakruddin M, Chowdhury A, Hossain MN, Mannan KS, Mazumdar M. Pyrosequencing-principles and applications. Int J Life Sci Pharm Res. 2012;2(2):65-76.

Ronaghi M. Pyrosequencing sheds light on DNA sequencing. Genome Research. 2001;11(1):3-11. doi: 10.1101/gr.11.1.3, PMID 11156611.

Metzker ML. Sequencing technologies- the next generation. Nature Reviews Genetics. 2010;11(1):31-46. doi: 10.1038/nrg2626, PMID 19997069.

Vahid Dastjerdi EV, Abdolazimi Z, Ghazanfarian M, Amdjadi P, Kamalinejad M, Mahboubi A. Effect of punica granatum L. flower water extract on five common oral bacteria and bacterial biofilm formation on orthodontic wire. Iran J Public Health. 2014;43(12):1688-94. PMID 26171362.

Pompilio A, Crocetta V, Pomponio S, Fiscarelli E, Di Bonaventura G. In vitro activity of colistin against biofilm by Pseudomonas aeruginosa is significantly improved under “cystic fibrosis-like” physicochemical conditions. Diagn Microbiol Infect Dis. 2015;82(4):318-25. doi: 10.1016/j.diagmicrobio.2015.01.006. PMID 26004353.

Beech IB, Smith JR, Steele AA, Penegar I, Campbell SA. The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloids and Surfaces B: Biointerfaces. 2002;23(2-3):231-47. doi: 10.1016/S0927-7765(01)00233-8.

Bodelon G, Garcia VM, Puente VL, Hill EH, Hamon C, Sanz Ortiz MN Bodelon G, Montes Garcia V, Lopez Puente V, Hill EH, Hamon C, Sanz Ortiz MN, Rodal Cedeira S, Costas C, Celiksoy S, Perez Juste I, Scarabelli L, La Porta A, Perez Juste J, Pastoriza Santos I, Liz Marzan LM. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nature Material. 2016;15(11):1203-11. doi: 10.1038/nmat4720, PMID 27500808.

Bosch A, Serra D, Prieto C, Schmitt J, Naumann D, Yantorno O. Characterization of Bordetella pertussis growing as biofilm by chemical analysis and FT-IR spectroscopy. Appl Microbiol Biotechnol. 2006;71(5):736-47. doi: 10.1007/s00253-005-0202-8, PMID 16292646.

Muhamadali H, Chisanga M, Subaihi A, Goodacre R. Combining Raman and FT-IR spectroscopy with quantitative isotopic labeling for differentiation of E. coli cells at community and single cell levels. Anal Chem. 2015;87(8):4578-86. doi: 10.1021/acs.analchem.5b00892, PMID 25831066.

Reuben S, Banas K, Banas A, Swarup S. Combination of synchrotron radiation-based Fourier transforms infrared microspectroscopy and confocal laser scanning microscopy to understand spatial heterogeneity in aquatic multispecies biofilms. Water Res. 2014;64:123-33. doi: 10.1016/j.watres.2014.06.039. PMID 25046376.

Odegaard H. Innovations in wastewater treatment: the moving bed biofilm process. Water Science and Technology. 2006;53(9):17-33. doi: 10.2166/wst.2006.284, PMID 16841724.

McQuarrie J, Dempsey MJ, Boltz JP, Johnson B. The expanded bed biofilm reactor (EBBR)-an innovative biofilm approach for tertiary nitrification. San Diego, CA, 13–17 October 13-17. Alexandria, VA: Water Environment Federation; 2007.

Dempsey MJ, Porto I, Mustafa M, Rowan AK, Brown A, Head IM. The expanded bed biofilter: Ccombined nitrification, solids destruction, and removal of bacteria. Water Science and Technology. 2006;54(8):37-46. doi: 10.2166/wst.2006.739, PMID 17163011.

Metcalf, Eddy. Wastewater Eengineering: Ttreatment and Rreuse. 4th edn. New York: McGraw-Hill; 2003.

Published

15-11-2021

How to Cite

SHARMA, J., P. K. JAIN, V. VISHWAKARMA, and A. SHRIVASTAVA. “CONTEMPLATION OF SYMBIOTIC MICROBIAL BIOFILMS IN WASTEWATER TREATMENT”. International Journal of Current Pharmaceutical Research, vol. 13, no. 6, Nov. 2021, pp. 24-31, doi:10.22159/ijcpr.2021v13i6.1921.

Issue

Section

Review Article(s)