DOSE-DEPENDENT PROTECTIVE FEATURES OF LOBOPHORA VARIEGATA METHANOLIC EXTRACT (LVME) IN N-NITROSODIETHYLAMINE INDUCED EXPERIMENTAL HEPATOCARCINOGENESIS IN RATS

Authors

  • ADAIKKALAM AJITHA Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
  • PERUMAL SUBRAMANIAN Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijcpr.2021v13i6.1920

Keywords:

Free radicals, Hepatocarcinoma, Lobophora variegate, N-nitrosodiethylamine, Xenobiotic enzymes

Abstract

Objective: This study explores the anti-cancer property of Lobophora variegata, also an effective dose to treat hepatocarcinoma in Male Albino Wistar rats in N-nitrosodiethylamine induced hepatocarcinoma paradigm and its possible mechanism of action.

Methods: In this study, rats were segregated into five groups; group-1 (control), group-2 treated with 0.01% NDEA through drinking water for 15 w, group-3 NDEA+treated with Lobophora variegata methanolic extract (LVME) (100 mg/kg b.w.), group-4 NDEA+treated with (LVME) (200 mg/kg b.w.) and group-5 NDEA+treated with (LVME) (400 mg/kg b.w.).

Results: After the experimental period, functional and morphological changes in the liver were observed both macro and microscopically, the activities of liver marker enzymes, alkaline phosphatase (ALP), aspartate and alanine transaminases (AST and ALT) were analyzed. Administration of LVME as 200 mg/kg b.w. (to NDEA treated rats) significantly (i) reduced the preneoplastic lesions alleviated lipid peroxidation through scavenging free radicals, (ii) enhanced antioxidant status and reverted liver/disease marker enzymes plausibly by modulating xenobiotics metabolizing enzymes (XMEs) and by exhibiting antiproliferative and cytoprotective effects.

Conclusion: LVME doses higher than 200 mg/kg b.w. are not effective in quenching the free radicals and restoring the liver functions as saturation level could have been reached; also, doses lower than 200 mg/kg b.w. could not be effective as they are below the optimum dose required to exhibit the pharmacological effects.

Downloads

Download data is not yet available.

References

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492, PMID 30207593.

Ding J, Wang H. Multiple interactive factors in hepatocarcinogenesis. Cancer Lett. 2014;346(1):17-23. doi: 10.1016/j.canlet.2013.12.024, PMID 24374016.

Balamurugan K, Karthikeyan J. Evaluation of luteolin in the prevention of N-nitrosodiethylamine-induced hepatocellular carcinoma using animal model system. Indian J Clin Biochem. 2012;27(2):157-63. doi: 10.1007/s12291-011-0166-7, PMID 23543260.

Aiub CAF, Pinto LF, Felzenszwalb I. N-nitrosodiethylamine mutagenicity at low concentrations. Toxicol Lett. 2003;145(1):36-45. doi: 10.1016/s0378-4274(03)00263-7, PMID 12962972.

Choi SY, Chung MJ, Sung NJ. Volatile N-nitrosamine inhibition after intake Korean green tea and maesil (Prunus mume SIEB. et ZACC.) extracts with an amine-rich diet in subjects ingesting nitrate. Food Chem Toxicol. 2002;40(7):949-57. doi: 10.1016/s0278-6915(02)00025-x, PMID 12065217.

Lijinsky W. N-nitroso compounds in the diet. Mutat Res. 1999;443(1-2):129-38. doi: 10.1016/s1383-5742(99)00015-0, PMID 10415436.

Panday S, Talreja R, Kavdia M. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species. Microvasc Res. 2020;131:104010. doi: 10.1016/j.mvr.2020.104010, PMID 32335268.

Farber JL, Gerson RJ. Mechanisms of cell injury with hepatotoxic chemicals. Pharmacol Rev. 1984;36(2);Suppl:71S-5S. PMID 6382357.

Gey KF. Prospects for the prevention of free radical disease, regarding cancer and cardiovascular disease. Br Med Bull. 1993;49(3):679-99. doi: 10.1093/oxfordjournals.bmb.a072640, PMID 8221032.

Arul D, Subramanian P. Inhibitory effect of naringenin (citrus flavonone) on N-nitrosodiethylamine induced hepato-carcinogenesis in rats. Biochem Biophys Res Commun. 2013;434(2):203-9. doi: 10.1016/j.bbrc.2013.03.039, PMID 23523793.

Amado NG, Cerqueira DM, Menezes FS, da Silva JF, Neto VM, Abreu JG. Isoquercitrin isolated from Hyptis fasciculata reduces glioblastoma cell proliferation and changes beta-catenin cellular localization. Anticancer Drugs. 2009;20(7):543-52. doi: 10.1097/CAD.0b013e32832d1149. PMID 19491660.

Fricke A, Titlyanova TV, Nugues MM, Bischof K. Depth-related variation in epiphytic communities growing on the brown alga Lobophora variegata in a Caribbean coral reef. Coral Reefs. 2011;30(4):967-73. doi: 10.1007/s00338-011-0772-0.

Li Y, Wijesekara I, Li Y, Kim S. Phlorotannins as bioactive agents from brown algae. Process Biochem. 2011;46(12):2219-24. doi: 10.1016/j.procbio.2011.09.015.

Erdmann K, Cheung BWY, Schroder H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem. 2008;19(10):643-54. doi: 10.1016/j.jnutbio.2007.11.010, PMID 18495464.

Sen S, Chakraborty R, Sridhar C. Free radicals, antioxidants, diseases and photomedicines: current status and future prospect. Int J Pharm Sci Rev Res. 2010;3(1):91-100.

Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405-10. doi: 10.1016/s1360-1385(02)02312-9, PMID 12234732.

Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28(1):56-63. doi: 10.1093/ajcp/28.1.56, PMID 13458125.

Niehaus WG, Samuelsson B. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem. 1968;6(1):126-30. doi: 10.1111/j.1432-1033.1968.tb00428.x, PMID 4387188.

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70-7. doi: 10.1016/0003-9861(59)90090-6, PMID 13650640.

Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179(4073):588-90. doi: 10.1126/science.179.4073.588, PMID 4686466.

Habig WH, Pabst MJ, Hebbar G, Ziegler TR. Nutritional interventions for cancer-induced cachexia. Curr Probl Cancer. 1974;35:58-90.

Bagchi D, Swaroop A, Preuss HG, Bagchi M. Free radical scavenging, antioxidant and cancer chemoprevention by grape seed pro anthocyanidin: an overview. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2014;768:69-73. doi: 10.1016/j.mrfmmm.2014.04.004.

Vessal M, Hemmati M, Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol. 2003;135C(3):357-64. doi: 10.1016/s1532-0456(03)00140-6, PMID 12927910.

Freile Pelegrin Y, Tasdemir D. Seaweeds to the rescue of forgotten diseases: a review. Bot Marina. 2019;62(3):211-26. doi: 10.1515/bot-2018-0071.

Santos SAO, Felix R, Pais ACS, Rocha SM, Silvestre AJD. The quest for phenolic compounds from macroalgae: a review of extraction and identification methodologies. Biomolecules. 2019;9(12):847. doi: 10.3390/biom9120847, PMID 31835386.

Stark YY, Hsieh Y. Distribution of flavonoids and related compounds from seaweeds in Japan. J Tokyo Univ Fish. 2003;89:1-6.

Hashim Z, Ilyas A, Zarina S. Therapeutic effect of hydrogen peroxide via altered expression of glutathione S-transferase and peroxiredoxin-2 in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2020;19(3):258-65. doi: 10.1016/j.hbpd.2020.03.006, PMID 32284258.

Singh BN, Singh BR, Sarma BK, Singh HB. Potential chemoprevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by polyphenolics from Acacia nilotica bark. Chem Biol Interact. 2009;181(1):20-8. doi: 10.1016/j.cbi.2009.05.007, PMID 19446540.

Ramakrishnan G, Augustine TA, Jagan S, Vinodhkumar R, Devaki T. Effect of silymarin on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Experimental Oncology. 2007;29(1):39-44. PMID 17431387.

Lee MH, Yoon S, Moon JO. The flavonoid naringenin inhibits dimethylnitrosamine-induced liver damage in rats. Biological and Pharmaceutical Bulletin. 2004;27(1):72-6. doi: 10.1248/bpb.27.72, PMID 14709902.

Casal A, Roche GM, Garcia Roche M, Navajas EA, Cassina A, Carriquiry M. Differential hepatic oxidative status in steers with divergent residual feed intake phenotype. Animal. 2020;14(1):78-85. doi: 10.1017/S1751731119001332, PMID 31218981.

Baker SC, Mason AS, Southgate J. Procarcinogen activation and mutational signatures model the initiation of carcinogenesis in human urothelial tissues in vitro. European Urology. 2020;78(2):143-7. doi: 10.1016/j.eururo.2020.03.049, PMID 32349929.

Victorelli FD, Cardoso VMdO, Ferreira NN, Calixto GMF, Fontana CR, Baltazar F, Gremiao MPD, Chorilli M. Chick embryo chorioallantoic membrane as a suitable in vivo model to evaluate drug delivery systems for cancer treatment: A review. Eur J Pharm Biopharm. 2020;153:273-84. doi: 10.1016/j.ejpb.2020.06.010.

Meenakshi S, Gnanambigai MD, Tamil Mozhi S, Arumugam M, Balasubrmaninam T. Total flavonoid and in vitro antioxidant activity of two seaweeds of rameshwaram coast. Global J Pharmacol. 2009;3:59-62.

Renugadevi J, Prabu SM. Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin. Experimental Toxicologic Pathology. 2010;62(2):171-81. doi: 10.1016/j.etp.2009.03.010, PMID 19409769.

Published

15-11-2021

How to Cite

AJITHA, A., and P. SUBRAMANIAN. “DOSE-DEPENDENT PROTECTIVE FEATURES OF LOBOPHORA VARIEGATA METHANOLIC EXTRACT (LVME) IN N-NITROSODIETHYLAMINE INDUCED EXPERIMENTAL HEPATOCARCINOGENESIS IN RATS”. International Journal of Current Pharmaceutical Research, vol. 13, no. 6, Nov. 2021, pp. 65-70, doi:10.22159/ijcpr.2021v13i6.1920.

Issue

Section

Original Article(s)