AJWAIN SEEDS AS CAPPING AGENT FOR Bi2O3 NANOFLAKES: SYNTHESIS AND GROWTH INHIBITING EFFICIENCY OF BACTERIA

Authors

  • BHARANI DHARAN SETHURAMAN Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, India
  • LAKSHMI PRABHA CHANDRASEKAR Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, India
  • MANIKANDAN SUBRAMANI Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, India
  • ASWATHY KARANATH ANILKUMAR IIISM, SRM Institute of Science and Technology, Kattankulathur, India
  • MUNUSWAMY-RAMANUJAM GANESH IIISM, SRM Institute of Science and Technology, Kattankulathur, India
  • SIVAKAMI MOHANDOS Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, India

DOI:

https://doi.org/10.22159/ijcpr.2023v15i3.2099

Keywords:

Green synthesis, Trachyspermum ammi, Bismuth oxide, Biological activity

Abstract

Objective: This work is mainly focused to determine the antibacterial activity of the green synthesized Bi2O3 nanoparticles against the bacterial strains, Staphylococcus aureus and Escherichia coli using resazurin as indicator.

Methods: Bismuth oxide nanoparticles were synthesized from the precursor bismuth nitrate [Bi (NO3)3.5H20] by using trachyspermum ammi (ajwain) seed extract. To carry out these works, the synthesized Bi2O3 NPs undergone characterizations and were confirmed by UV-Vis, FT-IR, XRD, SEM and EDAX, TGA-DTA and DLS. Biological activity was done using a well diffusion method.

Results: Bi2O3 NP's has been tested against bacteria (S. aureus and E. coli) in wells and shows blue colour, indicating bacterial growth inhibition in a dose-dependent manner for different concentrations.

Conclusion: The biological studies were done with one gram-positive and one gram-negative bacteria to show the inhibiting efficiency. The synthesized bismuth oxide nanoparticles showed good anti-bacterial activity (different concentrations) against S. aureus and E. coli.

Downloads

Download data is not yet available.

References

Khan ST, Musarrat J, Al-Khedhairy AA. Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B Biointerfaces. 2016;146:70-83. doi: 10.1016/j.colsurfb.2016.05.046, PMID 27259161.

Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspoch D. Application of metal and metal oxide nanoparticles@MOFs. Coord Chem Rev. 2016;307:237-54. doi: 10.1016/j.ccr.2015.08.002.

Aswathy Aromal S, Philip D. Green synthesis of gold nanoparticles using trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta A Mol Biomol Spectrosc. 2012;97:1-5. doi: 10.1016/j.saa.2012.05.083, PMID 22743607.

Abu Dief AM, Mohamed WS. α-Bi2O3nanorods: synthesis, characterization and UV-photocatalytic activity. Mater Res Express. 2017 Mar 29;4(3):35-9. doi: 10.1088/2053-1591/aa6712.

Mehring M. From molecules to bismuth oxide-based materials: potential homo- and heterometallic precursors and model compounds. Coord Chem Rev. 2007;251(7-8):974-1006. doi: 10.1016/j.ccr.2006.06.005.

Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31(2):346-56. doi: 10.1016/j.biotechadv.2013.01.003. PMID 23318667.

Salim ET, Al-Douri Y, Al Wazny MS, Fakhri MA. Optical properties of Cauliflower-like Bi2O3 nanostructures by reactive pulsed laser deposition (PLD) technique. Sol Energy. 2014;107:523-9. doi: 10.1016/j.solener.2014.05.020.

Proffit DL, Bai GR, Fong DD, Fister TT, Hruszkewycz SO, Highland MJ. Phase stabilization of δ-Bi2 O3 nanostructures by epitaxial growth onto single crystal SrTiO3 or DyScO3 substrates. Appl Phys Lett. 2010;96(2):2008-11.

Wang L, Cui ZL, Zhang ZK. Bi nanoparticles and Bi2O3 nanorods formed by thermal plasma and heat treatment. Surf Coat Technol. 2007;201(9-11):5330-2. doi: 10.1016/j.surfcoat.2006.07.027.

Fan HT, Pan SS, Teng XM, Ye C, Li GH, Zhang LD. δ-Bi2O3 thin films prepared by reactive sputtering: fabrication and characterization. Thin Solid Films. 2006;513(1-2):142-7. doi: 10.1016/j.tsf.2006.01.074.

Structure and properties of delta-bi 2 O. 3 islands and thin films a [dissertation] submitted to the graduate school in partial fulfillment of the requirements for the degree doctor of philosophy field of materials science and engineering by danielle lee pro (Dec); 2013.

Kim HW, Myung JH, Shim SH. One-dimensional structures of Bi2O3 synthesized via metalorganic chemical vapor deposition process. Solid State Commun. 2006;137(4):196-8. doi: 10.1016/j.ssc.2005.11.012.

Wu C, Shen L, Huang Q, Zhang YC. Hydrothermal synthesis and characterization of Bi2O3 nanowires. Mater Lett. 2011;65(7):1134-6. doi: 10.1016/j.matlet.2011.01.021.

Periasamy AP, Yang S, Chen SM. Preparation and characterization of bismuth oxide nanoparticles-multiwalled carbon nanotube composite for the development of horseradish peroxidase-based H₂O₂ biosensor. Talanta Talanta. 2011;87:15-23. doi: 10.1016/j.talanta.2011.09.021. PMID 22099642.

Motakef Kazemi N, Yaqoubi M. Green synthesis and characterization of bismuth oxide nanoparticle using mentha pulegium extract. Iran J Pharm Res. 2020;19(2):70-9. doi: 10.22037/ijpr.2019.15578.13190, PMID 33224212.

Bera KK, Majumdar R, Chakraborty M, Bhattacharya SK. Phase control synthesis of α, β and α/β Bi2O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B, under natural sunlight. J Hazard Mater. 2018;352:182-91. doi: 10.1016/j.jhazmat.2018.03.029, PMID 29609150.

Mallahi M, Shokuhfar A, Vaezi MR, Esmaeilirad A, Mazinani V. Synthesis and characterization of bismuth oxide nanoparticles via sol-gel method. Am J Eng Res. 2014;3(4):162-5.

Nurmalasari N, Yulizar Y, Apriandanu DOB. Bi 2 O 3 nanoparticles: synthesis, characterizations, and photocatalytic activity. IOP Conf Ser: Mater Sci Eng. 2020;763(1):4-9. doi: 10.1088/1757-899X/763/1/012036.

Zhou Y, Zhang H, Cheng Z, Wang H. Regulation of the PI3K/AKT/mTOR signaling pathway with synthesized bismuth oxide nanoparticles from ginger (Zingiber officinale) extract: mitigating the proliferation of colorectal cancer cells. Arab J Chem. 2022;15(2):103607. doi: 10.1016/j.arabjc.2021.103607.

El-Batal AI, El-Sayyad GS, El-Ghamry A, Agaypi KM, Elsayed MA, Gobara M. Melanin-gamma rays assistants for bismuth oxide nanoparticles synthesis at room temperature for enhancing antimicrobial, and photocatalytic activity. J Photochem Photobiol B. 2017;173:120-39. doi: 10.1016/j.jphotobiol.2017.05.030. PMID 28570907.

Bibi I, Kamal S, Ahmed A, Iqbal M, Nouren S, Jilani K. Nickel nanoparticle synthesis using camellia sinensis as reducing and capping agent: growth mechanism and photo-catalytic activity evaluation. Int J Biol Macromol. 2017;103:783-90. doi: 10.1016/j.ijbiomac.2017.05.023, PMID 28495625.

Bibi I, Nazar N, Iqbal M, Kamal S, Nawaz H, Nouren S. Green and eco-friendly synthesis of cobalt-oxide nanoparticle: characterization and photo-catalytic activity. Adv Powder Technol. 2017;28(9):2035-43. doi: 10.1016/j.apt.2017.05.008.

Nazar N, Bibi I, Kamal S, Iqbal M, Nouren S, Jilani K. Cu nanoparticles synthesis using a biological molecule of P. granatum seeds extract as reducing and capping agent: growth mechanism and photo-catalytic activity. Int J Biol Macromol. 2018;106:1203-10. doi: 10.1016/j.ijbiomac.2017.08.126, PMID 28851642.

Wang Z, Fang C, Megharaj M. Characterization of iron-polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustainable Chem Eng. 2014;2(4):1022-5. doi: 10.1021/sc500021n.

Published

15-05-2023

How to Cite

SETHURAMAN, B. D., L. P. CHANDRASEKAR, M. SUBRAMANI, A. K. ANILKUMAR, M.-R. GANESH, and S. MOHANDOS. “AJWAIN SEEDS AS CAPPING AGENT FOR Bi2O3 NANOFLAKES: SYNTHESIS AND GROWTH INHIBITING EFFICIENCY OF BACTERIA”. International Journal of Current Pharmaceutical Research, vol. 15, no. 3, May 2023, pp. 19-25, doi:10.22159/ijcpr.2023v15i3.2099.

Issue

Section

Original Article(s)