OVERVIEW ON CARBONDOTS

Authors

  • PRIYANKA SINHA Department of Pharmaceutics, C L BaidMetha College of Pharmacy, Chennai-600097, Tamilnadu, India
  • GRACE RATHNAM Department of Pharmaceutics, C L BaidMetha College of Pharmacy, Chennai-600097, Tamilnadu, India
  • DAN KASPERO S. M. Department of Pharmaceutics, C L BaidMetha College of Pharmacy, Chennai-600097, Tamilnadu, India
  • JAGAN KARTHICK N. Department of Pharmaceutics, C L BaidMetha College of Pharmacy, Chennai-600097, Tamilnadu, India

DOI:

https://doi.org/10.22159/ijcpr.2023v15i4.3013

Keywords:

Biosensing, Carbon dots,, Biocompatibility and Low cytotoxicity

Abstract

As a prospective material for biosensing, drug administration, and bioimaging, carbon dots (C-dots) have grown in popularity due to their outstanding visual characteristics, great biocompatibility, and low cytotoxicity. As a result, there has been a lot of curiosity about the development, characteristics, and potential applications of CDOTs. Based on variations in precursors and methods of preparation, CDOTs were divided into two classes. The procedure for the formation of CDots was outlined, and their luminescence process was investigated. Also presented were CDOTs' uses in biosensing, medication administration, and bioimaging. For their continued development, CDOTs' challenges and challenges were reviewed.

Downloads

Download data is not yet available.

References

Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004 Oct 13;126(40):12736-7. doi: 10.1021/ja040082h, PMID 15469243.

Lin L, Rong M, Luo F, Chen D, Wang Y, Chen X. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends Anal Chem. 2014 Feb 1;54:83-102. doi: 10.1016/j.trac.2013.11.001.

Lai CW, Hsiao YH, Peng YK, Chou PT. Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J Mater Chem. 2012;22(29):14403-9. doi: 10.1039/c2jm32206d.

Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015 Apr;11(14):1620-36. doi: 10.1002/smll.201402648, PMID 25521301.

Sun YP, Zhou B, Lin Y, Wang W, Fernando KA, Pathak P. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006 Jun 21;128(24):7756-7. doi: 10.1021/ja062677d, PMID 16771487.

Pan D, Zhang J, Li Z, Wu M. Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots. Adv Mater. 2010 Feb 9;22(6):734-8. doi: 10.1002/adma.200902825, PMID 20217780.

Xia C, Zhu S, Feng T, Yang M, Yang B. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv Sci (Weinh). 2019 Dec;6(23):1901316. doi: 10.1002/advs.201901316, PMID 31832313.

Mansuriya BD, Altintas Z. Enzyme-free electrochemical nano-immunosensor based on graphene quantum dots and gold nanoparticles for cardiac biomarker determination. Nanomaterials (Basel). 2021 Feb 26;11(3):578. doi: 10.3390/nano11030578, PMID 33652547.

Singh I, Arora R, Dhiman H, Pahwa R. Carbon quantum dots: synthesis, characterization and biomedical applications. Turk J Pharm Sci. 2018 Aug 1;15(2):219-30. doi: 10.4274/tjps.63497, PMID 32454664.

Saliha Di, Ozmelles RG. Carbon dots applications in electrochemical and electrochemiluminescence sensors: some examples of pathogen sensors. Turk J Anal Chem. 2020;2(1):37-46.

Liu W, Li M, Jiang G, Li G, Zhu J, Xiao M. Graphene quantum dots‐based advanced electrode materials: design, synthesis and their applications in electrochemical energy storage and electrocatalysis. Adv Energy Mater. 2020 Aug;10(29):2001275. doi: 10.1002/aenm.202001275.

Donate Buendia C, Torres Mendieta R, Pyatenko A, Falomir E, Fernandez Alonso M, Minguez Vega G. Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging. ACS Omega. 2018 Mar 7;3(3):2735-42. doi: 10.1021/acsomega.7b02082, PMID 30023850.

Dager A, Uchida T, Maekawa T, Tachibana M. Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: photoluminescence analysis using machine learning. Sci Rep. 2019 Sep 30;9(1):14004. doi: 10.1038/s41598-019-50397-5, PMID 31570739.

Khan S, Gupta A, Verma NC, Nandi CK. Time-resolved emission reveals ensemble of emissive states as the origin of multicolor fluorescence in carbon dots. Nano Lett. 2015 Dec 9;15(12):8300-5. doi: 10.1021/acs.nanolett.5b03915, PMID 26566016.

Bhatt S, Bhatt M, Kumar A, Vyas G, Gajaria T, Paul P. Green route for synthesis of multifunctional fluorescent carbon dots from Tulsi leaves and its application as Cr(VI) sensors, bio-imaging and patterning agents. Colloids Surf B Biointerfaces. 2018 Jul 1;167:126-33. doi: 10.1016/j.colsurfb.2018.04.008, PMID 29635135.

Sciortino A, Cannizzo A, Messina F. Carbon nanodots: a review-from the current understanding of the fundamental photophysics to the full control of the optical response. C. 2018 Dec 13;4(4):67. doi: 10.3390/c4040067.

Qu J, Luo C, Zhang Q, Cong Q, Yuan X. Easy synthesis of graphene sheets from alfalfa plants by treatment of nitric acid. Mater Sci Eng B. 2013 Apr 1;178(6):380-2. doi: 10.1016/j.mseb.2013.01.016.

Cao L, Zan M, Chen F, Kou X, Liu Y, Wang P. Formation mechanism of carbon dots: from chemical structures to fluorescent behaviors. Carbon. 2022 Jul 1;194:42-51. doi: 10.1016/j.carbon.2022.03.058.

Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother. 2017 Mar 1;87:209-22. doi: 10.1016/j.biopha.2016.12.108, PMID 28061404.

Tian L, Li Z, Wang P, Zhai X, Wang X, Li T. Carbon quantum dots for advanced electrocatalysis. J Energy Chem. 2021 Apr 1;55:279-94. doi: 10.1016/j.jechem.2020.06.057.

Jana J, Ngo YT, Chung JS, Hur SH. Contribution of carbon dot nanoparticles in electrocatalysis: development in the energy conversion process. J Electrochem Sci Technol. 2020;11(3):220-37. doi: 10.33961/jecst.2020.00934.

Xu Q, Kuang T, Liu Y, Cai L, Peng X, Sreenivasan Sreeprasad TS. Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. J Mater Chem B. 2016;4(45):7204-19. doi: 10.1039/c6tb02131j, PMID 32263722.

Kou X, Jiang S, Park SJ, Meng LY. A review: recent advances in preparations and applications of heteroatom-doped carbon quantum dots. Dalton Trans. 2020;49(21):6915-38. doi: 10.1039/d0dt01004a, PMID 32400806.

Ding H, Li XH, Chen XB, Wei JS, Li XB, Xiong HM. Surface states of carbon dots and their influences on luminescence. J Appl Phys. 2020 Jun 21;127(23):231101. doi: 10.1063/1.5143819.

El Shabasy RM, Farouk Elsadek M, Mohamed Ahmed B, Fawzy Farahat M, Mosleh KN, Taher MM. Recent developments in carbon quantum dots: properties, fabrication techniques, and bio-applications. Processes. 2021 Feb 20;9(2):388. doi: 10.3390/pr9020388.

Anwar S, Ding H, Xu M, Hu X, Li Z, Wang J. Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Appl Bio Mater. 2019 Jun 17;2(6):2317-38. doi: 10.1021/acsabm.9b00112, PMID 35030725.

Liu J, Li R, Yang B. Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent Sci. 2020 Dec 14;6(12):2179-95. doi: 10.1021/acscentsci.0c01306, PMID 33376780.

Jorns M, Pappas D. A review of fluorescent carbon dots, their synthesis, physical and chemical characteristics, and applications. Nanomaterials (Basel). 2021 May 30;11(6):1448. doi: 10.3390/nano11061448, PMID 34070762.

Hsu PC, Chang HT. Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem Commun (Camb). 2012;48(33):3984-6. doi: 10.1039/c2cc30188a, PMID 22422194.

De B, Karak N. A green and facile approach for the synthesis of water-soluble fluorescent carbon dots from banana juice. RSC Adv. 2013;3(22):8286-90. doi: 10.1039/c3ra00088e.

Dubey P, Tripathi KM, Mishra R, Bhati A, Singh A, Sonkar SK. A simple one-step hydrothermal route towards water solubilization of carbon quantum dots from soya-nuggets for imaging applications. RSC Adv. 2015;5(106):87528-34. doi: 10.1039/C5RA14536H.

Bottini M, Tautz L, Huynh H, Monosov E, Bottini N, Dawson MI. Covalent decoration of multi-walled carbon nanotubes with silica nanoparticles. Chem Commun (Camb). 2005 Feb 1;6(6):758-60. doi: 10.1039/b412876a, PMID 15685328.

Calabro RL, Yang DS, Kim DY. Liquid-phase laser ablation synthesis of graphene quantum dots from carbon nano-onions: comparison with chemical oxidation. J Colloid Interface Sci. 2018 Oct 1;527:132-40. doi: 10.1016/j.jcis.2018.04.113, PMID 29787949.

Joseph J, Anappara AA. White‐light‐emitting carbon dots prepared by the electrochemical exfoliation of graphite. Chem Phys Chem. 2017 Feb 2;18(3):292-8. doi: 10.1002/cphc.201601020, PMID 27925418.

Deng J, Lu Q, Mi N, Li H, Liu M, Xu M. Electrochemical synthesis of carbon nanodots directly from alcohols. Chemistry. 2014 Apr 22;20(17):4993-9. doi: 10.1002/chem.201304869, PMID 24623706.

Wu Y, Liu Y, Yin J, Li H, Huang J. Facile ultrasonic synthesized NH2-carbon quantum dots for ultrasensitive Co2+ ion detection and cell imaging. Talanta. 2019 Dec 1;205:120121. doi: 10.1016/j.talanta.2019.120121, PMID 31450457.

Xie Y, Cheng D, Liu X, Han A. Green hydrothermal synthesis of N-doped carbon dots from biomass highland barley for the detection of Hg2+. Sensors (Basel). 2019 Jul 18;19(14):3169. doi: 10.3390/s19143169, PMID 31323887.

Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP. Surface functionalized carbogenic quantum dots. Small. 2008 Apr;4(4):455-8. doi: 10.1002/smll.200700578, PMID 18350555.

Wang L, Wang Y, Xu T, Liao H, Yao C, Liu Y. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun. 2014 Oct 28;5(1):5357. doi: 10.1038/ncomms6357, PMID 25348348.

Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed Engl. 2015;54(18):5360-3. doi: 10.1002/anie.201501193. PMID 25832292.

Singh RK, Kumar R, Singh DP, Savu R, Moshkalev SA. Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bio applications: a review. Mater Today Chem. 2019 Jun 1;12:282-314. doi: 10.1016/j.mtchem.2019.03.001.

Carassiti L, Jones A, Harrison P, Dobson PS, Kingman S, MacLaren I. Ultra-rapid, sustainable and selective synthesis of silicon carbide powders and nanomaterials via microwave heating. Energy Environ Sci. 2011;4(4):1503-10. doi: 10.1039/c0ee00799d.

Shin Y, Lee J, Yang J, Park J, Lee K, Kim S. Mass production of graphene quantum dots by one‐pot synthesis directly from graphite in high yield. Small. 2014 Mar;10(5):866-70. doi: 10.1002/smll.201302286, PMID 24745051.

Kurdyukov DA, Eurov DA, Rabchinskii MK, Shvidchenko AV, Baidakova MV, Kirilenko DA. Controllable spherical aggregation of monodisperse carbon nanodots. Nanoscale. 2018;10(27):13223-35. doi: 10.1039/c8nr01900b, PMID 29971299.

Yang Y, Wu D, Han S, Hu P, Liu R. Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft–hard template approach. Chem Commun (Camb). 2013;49(43):4920-2. doi: 10.1039/c3cc38815h, PMID 23598552.

Riaz R, Ali M, Sahito IA, Arbab AA, Maiyalagan T, Anjum AS. Self-assembled nitrogen-doped graphene quantum dots (N-GQDs) over graphene sheets for superb electro-photocatalytic activity. Appl Surf Sci. 2019 Jun 30;480:1035-46. doi: 10.1016/j.apsusc.2019.02.228.

Kurdyukov DA, Eurov DA, Rabchinskii MK, Shvidchenko AV, Baidakova MV, Kirilenko DA. Controllable spherical aggregation of monodisperse carbon nanodots. Nanoscale. 2018;10(27):13223-35. doi: 10.1039/c8nr01900b, PMID 29971299.

Wang C, Shi H, Yang M, Yan Y, Liu E, Ji Z. Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions. Mater Res Bull. 2020 Apr 1;124:110730. doi: 10.1016/j.materresbull.2019.110730.

Hu W, Yuan X. Facile hydrothermal synthesis of SnO 2 nanospheres as photocatalysts. J Nanomater. 2017 May 31;2017:1-6. doi: 10.1155/2017/6976203.

Moradi S, Sadrjavadi K, Farhadian N, Hosseinzadeh L, Shahlaei M. Easy synthesis, characterization and cell cytotoxicity of green nano carbon dots using hydrothermal carbonization of gum tragacanth and chitosan bio-polymers for bioimaging. J Mol Liq. 2018 Jun 1;259:284-90. doi: 10.1016/j.molliq.2018.03.054.

Das P, Bhattacharyya SK, Banerji P, Das NC. Acoustic cavitation assisted synthesis and characterization of photoluminescent carbon quantum dots for biological applications and their future prospective. Nano Struct Nano-Objects. 2021 Feb 1;25:100641. doi: 10.1016/j.nanoso.2020.100641.

Du J, Xu N, Fan J, Sun W, Peng X. Carbon dots for in vivo bioimaging and theranostics. Small. 2019 Aug;15(32):e1805087. doi: 10.1002/smll.201805087, PMID 30779301.

Pan D, Guo L, Zhang J, Xi C, Xue Q, Huang H. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J Mater Chem. 2012;22(8):3314-8. doi: 10.1039/c2jm16005f.

Horobin RW, Stockert JC, Rashid Doubell F. Uptake and localisation of small-molecule fluorescent probes in living cells: a critical appraisal of QSAR models and a case study concerning probes for DNA and RNA. Histochem Cell Biol. 2013 May;139(5):623-37. doi: 10.1007/s00418-013-1090-0, PMID 23542926.

Roy P, Periasamy AP, Lin CY, Her GM, Chiu WJ, Li CL. Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells. Nanoscale. 2015;7(6):2504-10. doi: 10.1039/c4nr07005d, PMID 25569453.

Qian Z, Shan X, Chai L, Ma J, Chen J, Feng H. Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl Mater Interfaces. 2014 May 14;6(9):6797-805. doi: 10.1021/am500403n, PMID 24707855.

Chen Z, Wang J, Miao H, Wang L, Wu S, Yang X. Fluorescent carbon dots derived from lactose for assaying folic acid. Sci China Chem. 2016 Apr;59(4):487-92. doi: 10.1007/s11426-015-5536-1.

Ghanem A, Al-Qassar Bani Al-Marjeh RA, Atassi Y. Novel nitrogen-doped carbon dots prepared under microwave irradiation for highly sensitive detection of mercury ions. Heliyon. 2020 Apr 1;6(4):e03750. doi: 10.1016/j.heliyon.2020.e03750, PMID 32322729.

Yen YT, Lin YS, Chen TH, Chyueh SC, Chang HT. A carbon-dot sensing probe for screening of date rape drugs: nitro-containing benzodiazepines. Sens Actuators B. 2020 Feb 15;305:127441. doi: 10.1016/j.snb.2019.127441.

Li HW, Mao JY, Lien CW, Wang CK, Lai JY, Mandal RP. Platinum ions mediate the interactions between DNA and carbon quantum dots: diagnosis of MRSA infections. J Mater Chem B. 2020;8(16):3506-12. doi: 10.1039/c9tb02468a, PMID 31859331.

Song Y, Shi W, Chen W, Li X, Ma H. Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells. J Mater Chem. 2012;22(25):12568-73. doi: 10.1039/c2jm31582c.

Lai CW, Hsiao YH, Peng YK, Chou PT. Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J Mater Chem. 2012;22(29):14403-9. doi: 10.1039/c2jm32206d.

Kong B, Zhu A, Ding C, Zhao X, Li B, Tian Y. Carbon dot‐based inorganic–organic nanosystem for two‐photon imaging and biosensing of pH variation in living cells and tissues. Adv Mater. 2012 Nov 14;24(43):5844-8. doi: 10.1002/adma.201202599, PMID 22933395.

Kang YF, Fang YW, Li YH, Li W, Yin XB. Nucleus-staining with biomolecule-mimicking nitrogen-doped carbon dots prepared by a fast neutralization heat strategy. Chem Commun (Camb). 2015;51(95):16956-9. doi: 10.1039/c5cc06304c, PMID 26445735.

Yang ST, Cao L, Luo PG, Lu F, Wang X, Wang H. Carbon dots for optical imaging in vivo. J Am Chem Soc. 2009 Aug 19;131(32):11308-9. doi: 10.1021/ja904843x, PMID 19722643.

Published

15-07-2023

How to Cite

SINHA, P., G. RATHNAM, D. K. S. M., and J. K. N. “OVERVIEW ON CARBONDOTS”. International Journal of Current Pharmaceutical Research, vol. 15, no. 4, July 2023, pp. 9-14, doi:10.22159/ijcpr.2023v15i4.3013.

Issue

Section

Review Article(s)

Most read articles by the same author(s)