3D SCAFFOLDS BY 3D BIOPRINTING
DOI:
https://doi.org/10.22159/ijcpr.2023v15i6.3075Keywords:
3D printing, 3D bioprinting, Scaffolds, Bio Ink, Tissue Engineering, PrintingAbstract
When it comes to tissue engineering, 3D printing is a crucial technique for creating intricate constructions using biocompatible materials, cells, and supporting elements. The concept of "3D bioprinting" is concerning 3D printing, which may be used to design personalised implants, paving the way for new bio-manufacturing methods. The method of 3D bioprinting is promising because it can create biomimetic 3D structures that mimic the extracellular matrix and build extremely accurate multifunctional scaffolds with uniform cell distribution for tissue repair and regeneration. The focus of this review is on the 3D printed constructions made from various synthetic and natural materials. With an emphasis on the most recent developments, this study aims to provide an overview of the state-of-the-art field of 3D printing techniques in applications for tissue engineering. An evaluation and overview of using 3D bioprinting, viewpoints of bio-ink, printing technology, and application are presented in this review.
Downloads
References
Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol. 2004;64(6):789-817. doi: 10.1016/j.compscitech.2003.09.001.
Patricio T, Domingos M, Gloria A, Bartolo P. Characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Procedia CIRP. 2013;5:110-4. doi: 10.1016/j.procir.2013.01.022.
Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW. Additive manufacturing of tissues and organs. Prog Polym Sci. 2012;37(8):1079-104. doi: 10.1016/j.progpolymsci.2011.11.007.
Patterson J, Martino MM, Hubbell JA. Biomimetic materials in tissue engineering. Mater Today. 2010;13(1-2):14-22. doi: 10.1016/S1369-7021(10)70013-4.
Matsuno T, Omata K, Hashimoto Y, Tabata Y, Satoh T. Alveolar bone tissue engineering using composite scaffolds for drug delivery. Jpn Dent Sci Rev. 2010;46(2):188-92. doi: 10.1016/j.jdsr.2009.12.001.
Lam CXF, Mo XM, Teoh SH, Hutmacher DW. Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C. 2002;20(1-2):49-56. doi: 10.1016/S0928-4931(02)00012-7.
Prasopthum A, Deng Z, Khan IM, Yin Z, Guo B, Yang J. Three-dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells. Biomater Sci. 2020;8(15):4287-98. doi: 10.1039/d0bm00621a, PMID 32589696.
Prasopthum A, Cooper M, Shakesheff KM, Yang J. Three-dimensional printed scaffolds with controlled micro-/nanoporous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells. ACS Appl Mater Interfaces. 2019;11(21):18896-906. doi: 10.1021/acsami.9b01472, PMID 31067023.
Vermeulen N, Haddow G, Seymour T, Faulkner Jones A, Shu Wenmiao. 3D bioprint me: a socioethical view of bioprinting human organs and tissues. J Med Ethics. 2017;43(9):618-24. doi: 10.1136/medethics-2015-103347, PMID 28320774.
Singh P, Sing G. A review paper on 3D-printing technology and its application medical field. J Emerg Technol Innov Res. 2018;5(10).
Nyberg EL, Farris AL, Hung BP, Dias M, Garcia JR, Dorafshar AH. 3D-printing technologies for craniofacial rehabilitation, reconstruction, and regeneration. Ann Biomed Eng. 2017;45(1):45-57. doi: 10.1007/s10439-016-1668-5, PMID 27295184.
Fahmy MD, Jazayeri HE, Razavi M, Masri R, Tayebi L. Three-dimensional bioprinting materials with potential application in preprosthetic surgery. J Prosthodont. 2016;25(4):310-8. doi: 10.1111/jopr.12431, PMID 26855004.
Wu GH, Hsu SH. Review: polymeric-based 3D printing for tissue engineering. J Med Biol Eng. 2015;35(3):285-92. doi: 10.1007/s40846-015-0038-3, PMID 26167139.
Arslan Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication. 2016;8(1):014103. doi: 10.1088/1758-5090/8/1/014103, PMID 26930133.
Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. doi: 10.1016/j.biomaterials.2019.119536, PMID 31648135.
Abdolahad M, Taghinejad H, Saeidi A, Taghinejad M, Janmaleki M, Mohajerzadeh S. Cell membrane electrical charge investigations by silicon nanowires incorporated field effect transistor (SiNWFET) suitable in cancer research. RSC Adv. 2014;4(15):7425-31. doi: 10.1039/c3ra46272b.
Odde DJ, Renn MJ. Laser-guided direct writing for applications in biotechnology. Trends Biotechnol. 1999;17(10):385-9. doi: 10.1016/s0167-7799(99)01355-4, PMID 10481169.
Wang Y, Wang K, Li Xinpei, Wei Q, Chai W, Wang S. 3D fabrication and characterization of phosphoric acid scaffold with a HA/β-TCP weight ratio of 60:40 for bone tissue engineering applications. PLoS One. 2017;12(4):e0174870. doi: 10.1371/journal.pone.0174870, PMID 28406922.
Ankita Sachdev IV, Acharya S, Gadodia T, Shukla S, Harshita J, Akre C. Review on techniques and biomaterials used in 3D. Bioprinting. 2022;14(8).
Xu T, Jin J, Gregory C, Hickman JJJJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26(1):93-9. doi: 10.1016/j.biomaterials.2004.04.011, PMID 15193884.
Pepper ME, Seshadri V, Burg TC, Burg KJL, Groff RE. Characterizing the effects of cell settling on bioprinter output. Biofabrication. 2012;4(1):011001. doi: 10.1088/1758-5082/4/1/011001, PMID 22257751.
Kacarevic ZP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials (Basel). 2018;11(11):2199. doi: 10.3390/ma11112199, PMID 30404222.
Landers R, Mulhaupt R. Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng. 2000;282(1):17-21. doi: 10.1002/1439-2054(20001001)282:1<17::AID-MAME17>3.0.CO;2-8.
Maher PS, Keatch RP, Donnelly K, Paxton JZ. Formed 3D bio-scaffolds via rapid prototyping technology. In: Vander Sloten J, Verdonck P, Nyssen M, Haueisen J, editors. Proceedings of the 4th European conference of the International Federation for Medical and Biological Engineering, Antwerp, Belgium. Berlin, Heidelberg, Germany: Springer; 2009. p. 2200-4. doi: 10.1007/978-3-540-89208-3_526.
You F, Eames BF, Chen X. Application of extrusion-based hydrogel bioprinting for cartilage tissue engineering. Int J Mol Sci. 2017;18(7):1597. doi: 10.3390/ijms18071597, PMID 28737701.
Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature. 2016;540(7633):371-8. doi: 10.1038/nature21003, PMID 27974748.
Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 2010;6(7):2494-500. doi: 10.1016/j.actbio.2009.09.029, PMID 19819356.
Hakobyan D, Kerouredan O, Remy M, Dusserre N, Medina C, Devillard R. Laser-assisted bioprinting for bone repair. In: Crook JM, editor. 3D bioprinting: principles and protocols. Springer. New York; 2020. p. 135-44.
Barron JA, Krizman DB, Ringeisen BR. Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng. 2005;33(2):121-30. doi: 10.1007/s10439-005-8971-x, PMID 15771266.
Pattanayak DK, Fukuda A, Matsushita T, Takemoto M, Fujibayashi S, Sasaki K. Bioactive ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments. Acta Biomater. 2011;7(3):1398-406. doi: 10.1016/j.actbio.2010.09.034, PMID 20883832.
Lohfeld S, Tyndyk MA, Cahill S, Flaherty N, Barron V, McHugh PE. A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering. JBiSE. 2010;03(2):138-47. doi: 10.4236/jbise.2010.32019.
Metallic biomaterials processing and medical device manufacturing a volume in woodhead publishing series in biomaterials. BK; 2020.
Jang J, Park HJ, Kim SW, Kim H, Park JY, Na SJ. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264-74. doi: 10.1016/j.biomaterials.2016.10.026, PMID 27770630.
Vanaei S, Parizi MS, Vanaei S. An overview on materials and techniques in 3D bioprinting toward biomedical application engineered. Regeneration. 2021;2:1-18.
Zhu J, Beamish JA, Tang C, Kottke Marchant K, Marchant RE. Extracellular matrix-like cell-adhesive hydrogels from RGD-containing poly (ethylene glycol) diacrylate. Macromolecules. 2006;39(4):1305-7. doi: 10.1021/ma052333s.
Van Noort R. The future of dental devices is digital. Dent Mater. 2012;28(1):3-12. doi: 10.1016/j.dental.2011.10.014, PMID 22119539.
Sampson KL, Deore B, Go A, Nayak MA, Orth A, Gallerneault M. Multimaterial vat polymerization additive manufacturing. ACS Appl Polym Mater. 2021;3(9):4304-24. doi: 10.1021/acsapm.1c00262.
Li Y, Wang Wanyue, Wu Fuhang, Kankala RK. Vat polymerization-based 3D printing of nanocomposites: a mini-review. Front Mater. 2023;9:1118943. doi: 10.3389/fmats.2022.1118943.
Bonandrini B, Figliuzzi M, Papadimou E, Morigi M, Perico N, Casiraghi F. Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng Part A. 2014;20:1486-98. doi: 10.1089/ten.TEA.2013.0269, PMID 24320825.
Yan Y, Wang X, Xiong Z, Liu H, Liu F, Lin F. Direct construction of a three-dimensional structure with cells and hydrogel. J Bioact Compat Polym. 2005;20(3):259-69. doi: 10.1177/0883911505053658.
Hu M, He Z, Han F, Shi C, Zhou P, Ling F. Reinforcement of calcium phosphate cement using alkaline-treated silk fibroin. Int J Nanomedicine. 2018;13:7183-93. doi: 10.2147/IJN.S172881, PMID 30519015.
Kuijpers AJ, van Wachem PB, van Luyn MJ, Plantinga JA, Engbers GH, Krijgsveld J. In vivo compatibility and degradation of crosslinked gelatin gels incorporated in knitted Dacron. J Biomed Mater Res. 2000;51(1):136-45. doi: 10.1002/(sici)1097-4636(200007)51:1<136::aid-jbm18>3.0.co;2-w, PMID 10813755.
Park J, Lee SJ, Chung S, Lee JH, Kim WD, Lee JY. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: characterization and evaluation. Mater Sci Eng C Mater Biol Appl. 2017;71:678-84. doi: 10.1016/j.msec.2016.10.069, PMID 27987760.
Zhao X, Liu L, Wang J, Xu Y, Zhang W, Khang G. In vitro vascularization of a combined system based on a 3D printing technique. J Tissue Eng Regen Med. 2016;10(10):833-42. doi: 10.1002/term.1863, PMID 24399638.
Abbadessa A, Mouser VHM, Blokzijl MM, Gawlitta D, Dhert WJA, Hennink WE. A synthetic thermosensitive hydrogel for cartilage bioprinting and its biofunctionalization with polysaccharides. Biomacromolecules. 2016;17(6):2137-47. doi: 10.1021/acs.biomac.6b00366, PMID 27171342.
Sharif M, George E, Shepstone L, Knudson W, Thonar EJ, Cushnaghan J. Serum hyaluronic acid level as a predictor of disease progression in osteoarthritis of the knee. Arthritis Rheum. 1995;38(6):760-7. doi: 10.1002/art.1780380608, PMID 7779118.
Duarte Campos DF, Blaeser A, Weber M, Jakel J, Neuss S, Jahnen Dechent W. Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication. 2013;5(1):015003. doi: 10.1088/1758-5082/5/1/015003, PMID 23172592.
Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3(8):1894-904. doi: 10.1111/j.1538-7836.2005.01365.x, PMID 16102057.
Wang X, Sui S. Pulsatile culture of a poly(DL-lactic-co-glycolic acid) sandwiched cell/hydrogel construct fabricated using a step-by-step mold/extraction method. Artif Organs. 2011;35(6):645-55. doi: 10.1111/j.1525-1594.2010.01137.x, PMID 21671960.
Jiang Z, Hao J, You Y, Liu Y, Wang Z, Deng X. Biodegradable and thermoreversible hydrogels of poly(ethylene glycol)-poly(epsilon-caprolactone-co-glycolide)-poly(ethylene glycol) aqueous solutions. J Biomed Mater Res A. 2008;87(1):45-51. doi: 10.1002/jbm.a.31699, PMID 18080306.
Gao G, Schilling AF, Hubbell K, Yonezawa T, Truong D, Hong Y. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett. 2015;37(11):2349-55. doi: 10.1007/s10529-015-1921-2, PMID 26198849.
Wang W, Li G, Huang Y. Modeling of bubble expansion-induced cell mechanical profile in laser-assisted cell direct writing. J Manuf Sci Eng. 2009;131(5):051013. doi: 10.1115/1.4000101.
Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells. 2008;26(1):127-34. doi: 10.1634/stemcells.2007-0520, PMID 17901398.
Tsai YC, Li S, Hu SG, Chang WC, Jeng US, Hsu SH. Synthesis of thermoresponsive amphiphilic polyurethane gel as a new cell printing material near body temperature. ACS Appl Mater Interfaces. 2015;7(50):27613-23. doi: 10.1021/acsami.5b10697, PMID 26651013.
Wang X, Liu C. Fibrin hydrogels for endothelialized liver tissue engineering with a predesigned vascular network. Polymers (Basel). 2018;10(10):1048. doi: 10.3390/polym10101048, PMID 30960973.
Wang X, Rijff BL, Khang G. A building-block approach to 3D printing a multichannel, organ-regenerative scaffold. J Tissue Eng Regen Med. 2017;11(5):1403-11. doi: 10.1002/term.2038, PMID 26123711.
Kim JA, Kim HN, Im SK, Chung S, Kang JY, Choi N. Collagen-based brain Microvasculature model in vitro using three-dimensional printed template. Biomicrofluidics. 2015;9(2):024115. doi: 10.1063/1.4917508, PMID 25945141.
Hu Y, Wu Y, Gou Z, Tao J, Zhang J, Liu Q. 3D-engineering of cellularized conduits for peripheral nerve regeneration. Sci Rep. 2016;6:32184. doi: 10.1038/srep32184, PMID 27572698.
Lorber B, Hsiao WK, Martin KR. Three-dimensional printing of the retina. Curr Opin Ophthalmol. 2016;27(3):262-7. doi: 10.1097/ICU.0000000000000252, PMID 27045545.
Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent. Exp Eye Res. 2018;173:188-93. doi: 10.1016/j.exer.2018.05.010, PMID 29772228.
Tagami T, Goto E, Kida R, Hirose K, Noda T, Ozeki T. Lyophilized ophthalmologic patches as novel corneal drug formulations using a semi-solid extrusion 3D printer. Int J Pharm. 2022;617:121448. doi: 10.1016/j.ijpharm.2022.121448, PMID 35066116.
Canabrava S, Diniz Filho A, Schor P, Fagundes DF, Lopes A, Batista WD. Production of an intraocular device using 3D printing: an innovative technology for ophthalmology. Arq Bras Oftalmol. 2015;78(6):393-4. doi: 10.5935/0004-2749.20150105, PMID 26677048.
Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication. 2014;6(2):024103. doi: 10.1088/1758-5082/6/2/024103, PMID 24464765.
Brown MA, Jiang S, Gan RZA. A 3D printed human ear model for standardized testing of hearing protection devices to blast exposure. Otol Neurotol (Open). June 2022;2(2):e010. doi: 10.1097/ONO.0000000000000010.
Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater. 2015;27(27):4035-40. doi: 10.1002/adma.201501099, PMID 26033288.
Lawlor KT, Vanslambrouck JM, Higgins JW, Chambon A, Bishard K, Arndt D. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat Mater. 2021;20(2):260-71. doi: 10.1038/s41563-020-00853-9, PMID 33230326.
Dai S, Wang Q, Jiang Z, Liu C, Teng X, Yan S. Application of three-dimensional printing technology in renal diseases. Front Med (Lausanne). 2022;9:1088592. doi: 10.3389/fmed.2022.1088592, PMID 36530907.
Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J. 2014;9(10):1304-11. doi: 10.1002/biot.201400305, PMID 25130390.
Kilian D, Ahlfeld T, Akkineni AR, Bernhardt A, Gelinsky M, Lode A. 3D Bioprinting of osteochondral tissue substitutes–in vitro-chondrogenesis in multi-layered mineralized constructs. Sci Rep. 2020;10(1):8277. doi: 10.1038/s41598-020-65050-9, PMID 32427838.
Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101(5):1255-64. doi: 10.1002/jbm.a.34420, PMID 23015540.
Kang LH, Armstrong PA, Lee LJ, Duan B, Kang KH, Butcher JT. Optimizing photo-encapsulation viability of heart valve cell types in 3D printable composite hydrogels. Ann Biomed Eng. 2017;45(2):360-77. doi: 10.1007/s10439-016-1619-1, PMID 27106636.
Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication. 2012;4(3):035005. doi: 10.1088/1758-5082/4/3/035005, PMID 22914604.
Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods. 2014;20(6):473-84. doi: 10.1089/ten.TEC.2013.0335, PMID 24188635.
Du X. 3D bio-printing review. IOP Conf Ser.: Mater Sci Eng. 2018;301(1). doi: 10.1088/1757-899X/301/1/012023.
Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011;8(55):153-70. doi: 10.1098/rsif.2010.0223, PMID 20719768.
Derr K, Zou J, Luo K, Song MJ, Sittampalam GS, Zhou C. Fully three-dimensional bioprinted skin equivalent constructs with validated morphology and barrier function. Tissue Eng Part C Methods. 2019;25(6):334-43. doi: 10.1089/ten.TEC.2018.0318, PMID 31007132.
Published
How to Cite
Issue
Section
Copyright (c) 2023 ARCHANA SHANTARAM GADAKH, ABHIJEET DATTATRAYA KULKARNI
This work is licensed under a Creative Commons Attribution 4.0 International License.