NANOPARTICLES: THE FUTURE OF DRUG DELIVERY
DOI:
https://doi.org/10.22159/ijcpr.2023v15i6.3076Keywords:
Novel drug delivery system, Drug deliveryAbstract
Material in the nanometric size are used as diagnostic instruments or even to administer therapeutic compounds to particular target regions in a controlled way in nanoparticles and nano delivery systems, which is a relatively young but fast-emerging discipline. By delivering accurate medications to specified locations and targets, nanotechnology provides numerous advantages in the treatment of chronic human diseases. The use of nanomedicine (including chemotherapy medicines, biological agents, immunotherapeutic agents, etc.) in the treatment of various illnesses has recently seen a number of notable uses. Through careful examination of the discovering and use of nanomaterials in enhancing the effectiveness of both new and old drugs (such as organic products) and preferential diagnosis through disease marker substances, the review article offers a comprehensive overview of recent developments in the field of nanoparticles and nano-based drug delivery. The advantages and disadvantages of using nanoparticles for the therapeutic delivery of drugs from natural or synthetic origins are also covered. Additionally, we have provided details on the developments and prospects in the field of nanotechnology.
Downloads
References
Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009 Feb;2(2):85-120. doi: 10.1007/s12274-009-9009-8, PMID 20174481.
Razzacki SZ, Thwar PK, Yang M, Ugaz VM, Burns MA. Integrated microsystems for controlled drug delivery. Adv Drug Deliv Rev. 2004 Feb 10;56(2):185-98. doi: 10.1016/j.addr.2003.08.012, PMID 14741115.
Patra JK, Baek KH. Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater. 2014 Oct;2014:1-12. doi: 10.1155/2014/417305.
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez Torres MDP, Acosta Torres LS. Nano-based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. doi: 10.1186/s12951-018-0392-8, PMID 30231877.
Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003 May;2(5):347-60. doi: 10.1038/nrd1088, PMID 12750738.
Jahangirian H, Lemraski EG, Webster TJ, Rafiee Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine. 2017;12:2957-78. doi: 10.2147/IJN.S127683, PMID 28442906.
Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng. 2007 Feb 1;96(2):203-9. doi: 10.1002/bit.21301, PMID 17191251.
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003 Feb 24;55(3):329-47. doi: 10.1016/s0169-409x(02)00228-4, PMID 12628320.
Zhang J, Saltzman M. Engineering biodegradable nanoparticles for drug and gene delivery. Chem Eng Prog. 2013 Mar;109(3):25-30, PMID 25374435.
Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019 Feb 27;2019:1-26. doi: 10.1155/2019/3702518.
Werner M, Auth T, Beales PA, Fleury JB, Hook F, Kress H. Nanomaterial interactions with biomembranes: bridging the gap between soft matter models and biological context. Biointerphases. 2018 Apr 3;13(2):028501. doi: 10.1116/1.5022145, PMID 29614862.
Amiot CL, Xu S, Liang S, Pan L, Zhao JX. Near-infrared fluorescent materials for sensing of biological targets. Sensors (Basel). 2008 May 8;8(5):3082-105. doi: 10.3390/s8053082, PMID 27879867.
Probst CE, Zrazhevskiy P, Bagalkot V, Gao X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev. 2013 May 1;65(5):703-18. doi: 10.1016/j.addr.2012.09.036, PMID 23000745.
Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine. 2017;12:5421-31. doi: 10.2147/IJN.S138624, PMID 28814860.
Daou TJ, Li L, Reiss P, Josserand V, Texier I. Effect of poly(ethylene glycol) length on the in vivo behavior of coated quantum dots. Langmuir. 2009 Mar 3;25(5):3040-4. doi: 10.1021/la8035083, PMID 19437711.
Yao J, Li P, Li L, Yang M. Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnostics, and therapy. Acta Biomater. 2018 Jul 1;74:36-55. doi: 10.1016/j.actbio.2018.05.004, PMID 29734008.
Kherlopian AR, Song T, Duan Q, Neimark MA, Po MJ, Gohagan JK. A review of imaging techniques for systems biology. BMC Syst Biol. 2008 Dec;2(1):74. doi: 10.1186/1752-0509-2-74, PMID 18700030.
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008 Aug 17;60(11):1307-15. doi: 10.1016/j.addr.2008.03.016, PMID 18555555.
Loo C, Lowery A, Halas NJ, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005;5(4):709-11. doi: 10.1021/nl050127s.
Reilly RM. Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. J Nucl Med. 2007 Jul 1;48(7):1039-42. doi: 10.2967/jnumed.107.041723, PMID 17607037.
Saad MZ, Jahan R, Bagul U. Nanopharmaceuticals: a new perspective of drug delivery system. Asian J Biomed Pharm Sci. 2012 Jan 1;2(14):11.
Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci. 2006 Feb 1;61(3):1027-40. doi: 10.1016/j.ces.2005.06.019.
Cuenca AG, Jiang H, Hochwald SN, Delano M, Cance WG, Grobmyer SR. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer. 2006 Aug 1;107(3):459-66. doi: 10.1002/cncr.22035, PMID 16795065.
Karlsson J, Vaughan HJ, Green JJ. Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Annu Rev Chem Biomol Eng. 2018 Jun 6;9:105-27. doi: 10.1146/annurev-chembioeng-060817-084055, PMID 29579402.
Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41(7):2545-61. doi: 10.1039/c2cs15327k.
Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev. 2016 Dec 15;107:163-75. doi: 10.1016/j.addr.2016.06.018, PMID 27426411.
Cho H, Gao J, Kwon GS. PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery. J Control Release. 2016 Oct 28;240:191-201. doi: 10.1016/j.jconrel.2015.12.015, PMID 26699425.
Yoo HS, Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer. J Control Release. 2001 Jan 29;70(1-2):63-70. doi: 10.1016/s0168-3659(00)00340-0, PMID 11166408.
Vu-Quang H, Vinding MS, Nielsen T, Ullisch MG, Nielsen NC, Kjems J. Theranostic tumor-targeted nanoparticles combining drug delivery with dual near-infrared and 19F magnetic resonance imaging modalities. Nanomedicine. 2016 Oct 1;12(7):1873-84. doi: 10.1016/j.nano.2016.04.010, PMID 27133191.
Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291-309. doi: 10.2147/IJN.S146315, PMID 29042776.
Jiang GB, Quan D, Liao K, Wang H. Preparation of polymeric micelles based on chitosan bearing a small amount of highly hydrophobic groups. Carbohydr Polym. 2006 Nov 23;66(4):514-20. doi: 10.1016/j.carbpol.2006.04.008.
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297-315, PMID 17717971.
Sackmann E. Physical basis of self-organization and function of membranes: physics of vesicles. Handbook of Biological Physics. 1995 Jan 1;1:213-304.
Lombardo D, Calandra P, Teresa Caccamo MT, Magazù S, Pasqua L, Kiselev MA. Interdisciplinary approaches to the study of biological membranes. AIMS Biophys. 2020;7(4):267-90. doi: 10.3934/biophy.2020020.
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005 Feb;4(2):145-60. doi: 10.1038/nrd1632, PMID 15688077.
Nekkanti V, Kalepu S. Recent advances in liposomal drug delivery: a review. Pharm Nanotechnol. 2015 Mar 1;3(1):35-55. doi: 10.2174/2211738503666150709173905.
Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet. 2001 Jul;40(7):539-51. doi: 10.2165/00003088-200140070-00005, PMID 11510630.
Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005 Mar;19(3):311-30. doi: 10.1096/fj.04-2747rev, PMID 15746175.
Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005 Dec 14;57(15):2215-37. doi: 10.1016/j.addr.2005.09.019, PMID 16297497.
Lombardo D. Liquid-like ordering of negatively charged poly(amidoamine) (PAMAM) dendrimers in solution. Langmuir. 2009 Mar 3;25(5):3271-5. doi: 10.1021/la804234p, PMID 19437728.
Lombardo D. Modeling dendrimers charge interaction in solution: relevance in biosystems. Biochem Res Int. 2014;837651. doi: 10.1155/2014/837651, PMID 24719765.
Liu J, Gray WD, Davis ME, Luo Y. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus. 2012 Jun 6;2(3):307-24. doi: 10.1098/rsfs.2012.0009, PMID 23741608.
Kayser O, Lemke A, Hernandez Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol. 2005 Feb 1;6(1):3-5. doi: 10.2174/1389201053167158, PMID 15727551.
Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release. 1999 Jun 2;59(3):299-307. doi: 10.1016/s0168-3659(99)00007-3, PMID 10332062.
Singh KK, Vingkar SK. Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. Int J Pharm. 2008 Jan 22;347(1-2):136-43. doi: 10.1016/j.ijpharm.2007.06.035, PMID 17709216.
Cai Z, Wang Y, Zhu LJ, Liu ZQ. Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs. Curr Drug Metab. 2010 Feb 1;11(2):197-207. doi: 10.2174/138920010791110836, PMID 20384585.
Sosnik A. Alginate particles as a platform for drug delivery by the oral route: state-of-the-art. ISRN Pharm. 2014;2014:926157. doi: 10.1155/2014/926157, PMID 25101184.
Patil NH, Devarajan PV. Insulin-loaded alginic acid nanoparticles for sublingual delivery. Drug Deliv. 2016 Feb 12;23(2):429-36. doi: 10.3109/10717544.2014.916769, PMID 24901208.
Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm. 2000 Jul 3;50(1):147-60. doi: 10.1016/s0939-6411(00)00084-9, PMID 10840198.
Halder A, Shukla D, Das S, Roy P, Mukherjee A, Saha B. Lactoferrin-modified betulinic acid-loaded PLGA nanoparticles are strong anti-leishmanials. Cytokine. 2018 Oct 1;110:412-5. doi: 10.1016/j.cyto.2018.05.010, PMID 29784509.
Kwon HY, Lee JY, Choi SW, Jang Y, Kim JH. Preparation of PLGA nanoparticles containing estrogen by emulsification–diffusion method. Colloids Surf A Physicochem Eng Aspects. 2001 Jun 30;182(1-3):123-30. doi: 10.1016/S0927-7757(00)00825-6.
Hong JS, Srivastava D, Lee I. Fabrication of poly(lactic acid) nano-and microparticles using a nanomixer via nanoprecipitation or emulsion diffusion. J Appl Polym Sci. 2018 May 10;135(18):46199. doi: 10.1002/app.46199.
Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems. Berlin: Springer; 2016. p. 33-93.
Ubrich N, Bouillot P, Pellerin C, Hoffman M, Maincent P. Preparation and characterization of propranolol hydrochloride nanoparticles: a comparative study. J Control Release. 2004 Jun 18;97(2):291-300. doi: 10.1016/j.jconrel.2004.03.023, PMID 15196756.
Gharehbeglou P, Jafari SM, Homayouni A, Hamishekar H, Mirzaei H. Fabrication of double W1/O/W2 nano-emulsions loaded with oleuropein in the internal phase (W1) and evaluation of their release rate. Food Hydrocoll. 2019 Apr 1;89:44-55. doi: 10.1016/j.foodhyd.2018.10.020.
Sundar S, Kundu J, Kundu SC. Biopolymeric nanoparticles. Sci Technol Adv Mater. 2010 Feb 26;11(1):014104. doi: 10.1088/1468-6996/11/1/014104, PMID 27877319.
Lopez Lopez M, Fernandez Delgado A, Moya ML, Blanco Arevalo D, Carrera C, de la Haba RR. Optimized preparation of levofloxacin-loaded polymeric nanoparticles. Pharmaceutics. 2019 Jan 30;11(2):57. doi: 10.3390/pharmaceutics11020057, PMID 30704034.
Divya K, Jisha MS. Chitosan nanoparticles preparation and applications. Environ Chem Lett. 2018 Mar;16(1):101-12. doi: 10.1007/s10311-017-0670-y.
Chen D, Han S, Zhu Y, Hu F, Wei Y, Wang G. Kidney-targeted drug delivery via rhein-loaded polyethyleneglycol-co-polycaprolactone-co-polyethylenimine nanoparticles for diabetic nephropathy therapy. Int J Nanomedicine. 2018;13:3507-27. doi: 10.2147/IJN.S166445, PMID 29950832.
Hawkins M, Saha S, Ravindran E, Rathnayake H. Asol–gel polymerization method for creating nanoporous polyimide silsesquioxane nanostructures as soft dielectric materials. J Polym Sci Part A: Polym Chem. 2019 Feb 15;57(4):562-71. doi: 10.1002/pola.29295.
Arpagaus C, Collenberg A, Rutti D, Assadpour E, Jafari SM. Nano spray drying for encapsulation of pharmaceuticals. Int J Pharm. 2018 Jul 30;546(1-2):194-214. doi: 10.1016/j.ijpharm.2018.05.037, PMID 29778825.
Sun YP, Meziani MJ, Pathak P, Qu L. Polymeric nanoparticles from rapid expansion of the supercritical fluid solution. Chemistry. 2005 Feb 18;11(5):1366-73. doi: 10.1002/chem.200400422, PMID 15390139.
Published
How to Cite
Issue
Section
Copyright (c) 2023 SYED SAIF IMAM
This work is licensed under a Creative Commons Attribution 4.0 International License.