COMPUTATIONAL SCREENING OF POTENT ANTI-INFLAMMATORY COMPOUNDS FOR HUMAN MITOGEN-ACTIVATED PROTEIN KINASE: A COMPREHENSIVE AND COMBINED IN SILICO APPROACH

Authors

DOI:

https://doi.org/10.22159/ijcpr.2024v16i6.6023

Keywords:

Inflammation, MAPK14, Virtual screening, Molecular docking, ADMET analysis

Abstract

Objective: Inflammatory diseases have a serious impact on one’s life and represent a diverse group of ailments stemming from various causes and presenting in various forms. p38α of the mitogen-activated protein kinase family plays a crucial role in regulating inflammation, where the activation of this kinase initiates a cascade of events resulting in the production of proinflammatory mediators and cellular stress responses. In this context, attempts were made to identify potent small-molecule inhibitors of p38α and assess their binding affinity through molecular docking studies.

Methods: From comprehensive reviews of several published reports, a few compounds, such as P38, P39, VPC00628, and N17, have shown substantial inhibitory activity toward p38α at various concentrations. Hence, these four compounds were chosen as lead compounds, and small-molecule libraries were constructed on the basis of their structural similarity. Next, virtual screening docking was performed to investigate the inhibitory potency of the four libraries toward the p38α isoforms (DFG-out and DFG-in), providing insights into their potential mechanisms of action.

Results: In addition, a comprehensive analysis of physicochemical and pharmacokinetic properties was also performed for the identified hits from each library. Our findings have shown that, compared with those of the p38α DFG-in motif, the binding energies of the p38α DFG-out motif are greater.

Conclusion: Furthermore, a few compounds from each library presented binding energies higher than those of their respective lead compounds, confirming their potential as novel therapeutic agents against inflammation.

Downloads

Download data is not yet available.

References

Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N. Involvement of p38 MAPK in synaptic function and dysfunction. Int J Mol Sci. 2020 Aug 6;21(16):5624. doi: 10.3390/ijms21165624, PMID 32781522.

Yong HY, Koh MS, Moon A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs. 2009 Oct 23;18(12):1893-905. doi: 10.1517/13543780903321490.

Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol. 2002 Apr;20(1):55-72. doi: 10.1146/annurev.immunol.20.091301.131133, PMID 11861597.

Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010 Aug 1;429(3):403-17. doi: 10.1042/BJ20100323, PMID 20626350.

Han J, Sun P. The pathways to tumor suppression via route p38. Trends Biochem Sci. 2007 Aug 1;32(8):364-71. doi: 10.1016/j.tibs.2007.06.007, PMID 17624785.

Umasuthan N, Bathige SD, Noh JK, Lee J. Gene structure molecular characterization and transcriptional expression of two p38 isoforms (MAPK11 and MAPK14) from rock bream (Oplegnathus fasciatus). Fish Shellfish Immunol. 2015 Nov 1;47(1):331-43. doi: 10.1016/j.fsi.2015.09.018, PMID 26363230.

Kumar S, Boehm J, Lee JC. P38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov. 2003 Sep;2(9):717-26. doi: 10.1038/nrd1177, PMID 12951578.

Haar ET, Prabakhar P, Liu X, Lepre C. Crystal structure of the p38α-MAPKAP kinase 2 heterodimer. J Biol Chem. 2007 Mar 30;282(13):9733-9. doi: 10.1074/jbc.M611165200, PMID 17255097.

Lee JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, Adams JL. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology. 2000 May;47(2-3):185-201. doi: 10.1016/s0162-3109(00)00206-x, PMID 10878289.

DE Lorenzo A, Gratteri S, Gualtieri P, Cammarano A, Bertucci P, DI Renzo L. Why primary obesity is a disease? J Transl Med. 2019 May 22;17(1):169. doi: 10.1186/s12967-019-1919-y, PMID 31118060.

Lin LT, Hsu WC, Lin CC. Antiviral natural products and herbal medicines. J Tradit Complement Med. 2014 Jan;4(1):24-35. doi: 10.4103/2225-4110.124335, PMID 24872930.

Hou T, XU X. Recent development and application of virtual screening in drug discovery: an overview. Curr Pharm Des. 2004 Apr 1;10(9):1011-33. doi: 10.2174/1381612043452721, PMID 15078130.

Vermani A, Kouznetsova VL, Tsigelny IF. New inhibitors of the p38 mitogen activated protein kinase: repurposing existing drugs with deep learning. Biointerface Res Appl Chem. 2021 Oct 18;12(4):5384-404. doi: 10.33263/BRIAC124.53845404.

Schehr M, Ianes C, Weisner J, Heintze L, Muller MP, Pichlo C. 2-Azo-2-diazocine thiazols and 2-azo-imidazoles as photoswitchable kinase inhibitors: limitations and pitfalls of the photo switchable inhibitor approach. Photochem Photobiol Sci. 2019 Jun 1;18(6):1398-407. doi: 10.1039/c9pp00010k, PMID 30924488.

Bukhtiyarova M, Karpusas M, Northrop K, Namboodiri HV, Springman EB. Mutagenesis of p38α MAP kinase establishes key roles of Phe169 in function and structural dynamics and reveals a novel DFG-OUT state. Biochemistry. 2007 Apr 19;46(19):5687-96. doi: 10.1021/bi0622221, PMID 17441692.

Fearns C, Kline L, Gram H, DI Padova F, Zurini M, Han J. Coordinate activation of endogenous p38α, β, γ, and δ by inflammatory stimuli. J Leukoc Biol. 2000 May 1;67(5):705-11. doi: 10.1002/jlb.67.5.705, PMID 10811012.

Hynes J, Leftheri K. Small molecule p38 inhibitors: novel structural features and advances from 2002-2005. Curr Top Med Chem. 2005 Sep 1;5(10):967-85. doi: 10.2174/1568026054985920, PMID 16178741.

Wrobleski ST, Lin S, Hynes J, WU H, Pitt S, Shen DR. Synthesis and SAR of new pyrrolo [2,1-f][1,2,4] triazines as potent p38α MAP kinase inhibitors. Bioorg Med Chem Lett. 2008 Apr 15;18(8):2739-44. doi: 10.1016/j.bmcl.2008.02.067, PMID 18364256.

Petersen LK, Blakskjaer P, Chaikuad A, Christensen AB, Dietvorst J, Holmkvist J. Novel p38α MAP kinase inhibitors identified from yocto Reactor DNA-encoded small molecule library. Med. 2016;7(7):1332-9. doi: 10.1039/C6MD00241B.

Yurtsever Z, Patel DA, Kober DL, SU A, Miller CA, Romero AG. First comprehensive structural and biophysical analysis of MAPK13 inhibitors targeting DFG-in and DFG-out binding modes. Biochim Biophys Acta. 2016;1860:2335-44. doi: 10.1016/j.bbagen.2016.06.023, PMID 27369736.

Dallakyan S, Olson AJ. Small molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243-50. doi: 10.1007/978-1-4939-2269-7_19, PMID 25618350.

Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 2018 Jan;27(1):14-25. doi: 10.1002/pro.3235, PMID 28710774.

Dassault systemes biovia, [Discovery Studio visualizer]. V20.1.0.19295. San Diego: Dassault Systemes; 2020.

Daina A, Michielin O, Zoete V. Swiss ADME: a free web tool to evaluate pharmacokinetics drug likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017 Mar 3;7(1):42717. doi: 10.1038/srep42717, PMID 28256516.

Pires DE, Blundell TL, Ascher DB. Pkcsm: predicting small molecule pharmacokinetic and toxicity properties using graph based signatures. J Med Chem. 2015 Apr 22;58(9):4066-72. doi: 10.1021/acs.jmedchem.5b00104, PMID 25860834.

Clark AM, Dole K, Coulon Spektor A, McNutt A, Grass GM, Freundlich JS. Open source bayesian models. 1. Application to ADME/Tox and drug discovery datasets. J Chem Inf Model. 2015 Jun 3;55(6):1231-45. doi: 10.1021/acs.jcim.5b00143, PMID 25994950.

Published

15-11-2024

How to Cite

FRANCO, B. B., P. AGILANDESWARI, and L. KARTHIK. “COMPUTATIONAL SCREENING OF POTENT ANTI-INFLAMMATORY COMPOUNDS FOR HUMAN MITOGEN-ACTIVATED PROTEIN KINASE: A COMPREHENSIVE AND COMBINED IN SILICO APPROACH”. International Journal of Current Pharmaceutical Research, vol. 16, no. 6, Nov. 2024, pp. 21-32, doi:10.22159/ijcpr.2024v16i6.6023.

Issue

Section

Original Article(s)