EVALUATION OF MAXIMUM ENTROPY METHOD OF SPECTRUM ESTIMATION
Abstract
The parametric models autoregressive (AR)/AR-moving average (MA)/MA are sometimes not capable of finding out the power spectral densities of random sequences. Under such circumstances, the non-parametric methods outperform the parametric ones because of the sensitivity of the latter to model specifications. The maximum entropy method (MEM) is regarded as the non-parametric method of spectrum estimation; it suggests one possible way of extrapolating the autocorrelation sequence so that a more accurate estimate of the spectrum can be obtained with better resolution. This paper investigates the work of realizing MEM method and evaluating its performance with minimum variance method.
References
Monson H. Hayes, Statiscal Digital Signal Processing and Modeling. New York: John Wiley and Sons, INC; 2002.
Papoulis A. Probability, Random Variables, and Stochastic Processes. 3rd ed. New York, NY: McGraw-Hill Europe; 2002.
Janes ET. On the Rationale of Max-Ent Method. IEEE Paper
Vaseghi SV. Advanced Digital Signal Processing and Noise Reduction.3rd ed. Chichester: John Wiley & Sons, INC; 2006.
Proakis JG, Manolakis DG. Digital Signal Processing Principles,Algorithms and Applications, PHI: Prentice. Hall; 2007.
Chapman SJ. MATLAB Programming for Engineers. 3rd ed. Pacificove, CA: Brooks/Cole; 2004.