GROWTH OF FOURTH GENERATION ELONGATED TIO2 NANOTUBES IN MIXED ELECTROLYTES

Authors

  • DIPTI RANI BEHERA Biomaterials and Tissue Regeneration Laboratory, Centre of Excellence in Theoretical and Mathematical Sciences, Siksha ‘O’ Anusandhan University, Khandagiri Square, Bhubaneswar – 751030, Odisha, India
  • PRATIBINDHYA NAYAK
  • TAPASH RANJAN RAUTRAY

Keywords:

TiO2 nanotubes, anodization, oxalic acid, fluorine free, antibacterial

Abstract

Objective

The effects of oxalic acid and phosphoric acid mixture in the formation of enlarged titanium oxide nanotubes was investigated in the current study.

Methods

The anodizaion was carried out in an aqueous electrolyte containing oxalic acid, phosphoric acid, hydrogen peroxide in ethylene glycol in a simple two electrode system at room temperature by using potentiostat set up.

Results
The coexistence of anatase and rutile phases were noticed to be from higher ratio of anatase peaks to rutile peaks. Diameter of the TNTs increased with elevated applied voltage. At low voltage, random cracks with no noticeable structure was seen on the Ti substrate. But on increasing value of the applied potential, determinable tubular structure of TNTs emerges in the crack. Maximum number of E.Coli bacteria were noticed on the agar medium without TiO2 nanoparticles than observed on the agar medium with TiO2 nanoparticles.

Conclusion

The presence of H3PO4 in the electrolyte, enhanced the growth of nanotube diameter and length. The ionic current increased with increase in H3PO4 concentration that lead to formation of oxide layer and increase in oxide forming efficiency. Having better mechanical properties, adhesion strength, surface roughness, hydrophilic properties, the anodized titania nanotube surfaces are envisaged to have better cell activity, biocompatibility with antimicrobial property and also longevity. It can be applicable as the better implant surface in human body environment.

Keywords: TiO2 nanotubes; anodization; oxalic acid; fluorine free; antibacterial.

Author Biography

DIPTI RANI BEHERA, Biomaterials and Tissue Regeneration Laboratory, Centre of Excellence in Theoretical and Mathematical Sciences, Siksha ‘O’ Anusandhan University, Khandagiri Square, Bhubaneswar – 751030, Odisha, India

Assistant Prof, Biomaterials and Tissue Regeneration Laboratory, Centre of Excellence in Theoretical and Mathematical Sciences, Siksha ‘O’ Anusandhan University, Khandagiri Square, Bhubaneswar – 751030, Odisha, India

References

1. TR Rautray, R Narayanan, TY Kwon, KH Kim. Surface modification of titanium and titanium alloys by ion implantation. J Biomed Mater Res B Appl Biomater 2010; 93: 581-91.
2. TR Rautray, R Narayanan, KH Kim. Ion implantation of titanium based biomaterials. Prog Mater Sci 2011, 56: 1137-77.
3. Y Wang, C Wen, P Hodgson, Li Y. Biocompatibility of TiO2 nanotubes with different Topographies. J Biomed Mater Res A 2014; 102: 743-51.
4. KS Brammer, H Kim, K Noh, M Loya. Highly bioactive 8 nm hydrothermal TiO2 nanotubes elicit enhanced bone cell response. Adv Eng Mater 2011; 13: 88-94.
5. CH Chang, HC Lee, CC Chen,YH Wu, YM Hsu, YP Chang, et al. A novel rotating electrochemically anodizing process to fabricate titanium oxide surface nanostructures enhancing the bioactivity of osteoblastic cells. J Biomed Mater Res A 2012; 100: 1687-95.
6. K Shankar, GK Mor, HE Prakasam, OK Varghese, CA Grimes. Self-assembled hybrid polymer-TiO2 nanotubes array heterojunction Solar cells, Langmuir 2007; 23: 12445-49.
7. C Richter, Z Wu, E Panaitescu,RJ Willey, L Menon. Ultrahigh-aspect-ratio titania Nanotubes. Adv.Mater 2007; 19: 946–48.
8. X Chen, M Schrsiver, T Suen, SS Mao. Fabrication of 10nm diameter TiO2 nanotube arrays by Titanium anodization. Thin Solid Films 2007; 515: 8511-14.
9. TR Rautray, S Swain, KH Kim. Formation of anodic TiO2 nanotubes under magnetic field. Advanced Science Letters 2014; 20: 801-03.
10. KW Lee, CM Bae, JY Jung, J.Y, GB Sim. Surface characteristics and biological studies of hydroxyapatite coating by a new method. J Biomed Mater Res B Appl Biomater 2011; 98: 395-07.
11. R Narayanan, TY Kwon, KH Kim. TiO2 nanotube from glycerol/NH4F electrolyte: Roughness, wetting behavior and adhesion for implant applications. Mater. Chem. Phys 2009; 117: 460–64.
12. CA Grimes, GK Mor. Fabrication of TiO2 Nanotube Arrays by Electrochemical Anodization: Four Synthesis Generations. In: Anonymous TiO2 Nanotube Arrays. (Springer Science+Business Media; 2009).
13. P Roy, S Berger, P Schmuki. TiO2 nanotubes: synthesis and applications. Angewandte Chemie’ (International ed. in English) 2011; 50: 2904-39.
14. S Zhang, D Yu, D Li, Y Song, J Che, S You. Forming Process of Anodic TiO2 Nanotubes under a Preformed Compact Surface Layer. Journal of The Electrochemical Society 2014; 161: E141.
15. Q Cai, M Paulose, OK Varghese, CA Grimes. The effectof electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res 2005; 20: 230-36.
16. M Uchida, HM Kim, T Kokubo, S Fujibayashi. Structural Dependence of Apatite Formation on Titania Gels in a Simulated Body Fluid. J. Biomed.Mater. Res. A 2003; 164: 164-70.
17. P Scherrer. Bestimmung der grosse und der inneren struktur von kolloidteilchen mittels rontgenstrahlen. Nachrichten vonder Gesellschaft der Wissenschaften Gottingen. Mathematisch- Physikalische Klasse 1918; 2: 98–00.
18. YL Cheong, FK Yam, IK Chin, Z Hassan. X-ray analysis of nanoporous TiO2 synthesized by electrochemical anodizatio. Superlattice Microst 2013; 64: 37–43.
19. YL Cheong, FK Yam, YW Ooi, Z Hassan. Room-temperature synthesis of nanocrystalline titanium dioxide via electrochemical anodization. Mat. Sci. Semicon. Proc 2014; 26: 130–36.
20. OK Varghese, D Gong, M Paulose, C Grims, E Dickey. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res 2003; 18: 156–65.
21. R Hahn, H Lee, D Kim, S Narayanan, S Berger, P Schmuki. Self-organized anodic TiO2-nanotubes in fluoride free electrolytes. ECS Trans 2008; 16: 369–73.
22. D Gong, CA Grimes, OK Varghese, W Hu, RS Singh, Z Chen, et al. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001; 16: pp. 3331-34.
23. Q Cai, M Paulose, OK Varghese, CA Grimes. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res 2005; 20: 230-36.
24. H Wang, HY Li, JS Wang, JS Wu, M Liu. Influence of applied voltage on anodized TiO2 nanotube arrays and their performance on dye sensitized solar cells. J. Nanosci. Nanotech 2013; 13: 4183–88.
25. CA Grimes, GK Mor. TiO2 Nanotube Arrays: Synthesis, Properties, and Applications (Springer, London, 2009).
26. WS Tait. An introduction to electrochemical corrosion testing for practicing engineers and scientists (PairODocs Publications,1994).
27. M Pourbaix. Atlas of Electrochemical Equilibria in Aqueous Solutions. National Association of Engineers (Houston, 1974).
28. M Kurosaki, M Seo. Corrosion behavior of iron thin film in deaerated phosphate solutions by an electrochemical quartz crystal microbalance. Corrosion Science 2003; 45: 2597-07.
29. NK Allam, CA Grimes. Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte. J Phys Chem C 2007; 111: 13028-32.
30. S Shanmugam, A Gabashvili, DS Jacob, JC Yu, A Gedanken. Synthesis and characterization of TiO2–C core-shell composite nanoparticles and evaluation of their photocatalytic activities. Chem. Mater 2006;18:2275-82.
31. F Fracassi, R. D’Agostino. Chemistry of titanium dry etching in fluorinated and chlorinated gases. Pure Appl. Chem 1992; 64, 703.
32. F Yang, V Hlavacek. Effective extraction of titanium from rutile by a low-temperature chloride process. AIChE J. 2000; 46: 355-60.
33. R Hahn, JM Macak, P Schmuki. Rapic anodic growth of TiO2 and WO3 nanotubes in fluoride free electyrolytes. Electrochemistry Communications 2007; 9: 947-52.
34. R D’Agostino, F Fracassi, C Pacifico. Dry etching of Ti in chlorine containing feeds. J. Appl. Phys 1992; 72: 4351-57.
35. TR Rautray, V Vijayan, S Panigrahi. Analysis of Indian cholesterol gallstones by particle- induced X-ray emission and thermogravimetry-derivative thermogravimetr. Eur J Gastroenterol Hepatol 2006; 18: 999-03.
36. A Kar, KS Raja, M Misra. Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surf Coat Technol 2006; 201: 3723-31.
37. Jayaseelan, C., AA Rahuman, SM Roopan, AV Kirthi, J Venkatesan, S Kim, M Iyappan, C Siva. Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013; 107: 82–89.
38. K Ishibashi, R Yamaguchi, Y Kimura, M Niwano. Fabrication of Titanium oxide Nano tubes by Rapid and Homogeneous Anodization in Perchloric Acid / Ethanol mixture. J. Electrochem. Soc 2008; 155: 10-14.
39. NF FAahim, T Sekino. Preparation and characterization of high aspect ratio TiO2 nanotube powders using rapid anodization method in chloride-based electrolytes.
40. C Richter, E Panaitescu, R Willey. Titania nanotubes prepared by anodization in fluorine free acids. J. Maters. Res 2007; 22: 1624-31.

Published

01-04-2019

How to Cite

DIPTI RANI BEHERA, PRATIBINDHYA NAYAK, & TAPASH RANJAN RAUTRAY. (2019). GROWTH OF FOURTH GENERATION ELONGATED TIO2 NANOTUBES IN MIXED ELECTROLYTES. Innovare Journal of Engineering and Technology, 7(2), 1–5. Retrieved from https://journals.innovareacademics.in/index.php/ijet/article/view/33279

Issue

Section

Original Article(s)