• SAMEER SHARMA Department of Biotechnology, Dronacharya Government College, Gurugram, Haryana, India.
  • SUPRIYA JADHAV Department of Biotechnology, Dronacharya Government College, Gurugram, Haryana, India.
  • POOJA YADAV Department of Biotechnology, Dronacharya Government College, Gurugram, Haryana, India.


Epitopes, Ebola virus, Marburg virus, Molecular Docking


Objective: The objective of the study was to analyze the mutual epitope-based vaccine that can evoke immune response against hemorrhagic fever caused by Ebola virus (EBOV) and Marburg virus (MARV).

Methodology: VP40, VP24, VP35, VP30, and NP proteins of Ebola and MARV were recovered from the protein database and subjected to many bioinformatics tools to predict the best B- and T-cell epitopes. And finally, the selected proteins were subjected to molecular docking human leukocyte antigen (HLA)-DR (major histocompatibility complex [MHC] Class I and II) to confirm their antigenicity in silico.

Results: The epitopes from EBOV were stable while were unstable from MARV. Further, molecular docking simulation using most significant MHC Class II and Class I molecules demonstrated that their epitopes may bind within HLA-binding affinity to evoke an immune response.

Conclusions: In this study, the data revealed the epitopes from VP40 protein could be the specific target for peptide-based vaccine design against Ebola and MARV.


Sanchez A, Kiley MP, Holloway BP, Auperin DD. Sequence analysis of the Ebola virus genome: Organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res 1993;29:215-40.

Volchkov VE. Processing of the Ebola virus glycoprotein. In: Klenk HD, editor. Current Topics in Microbiology and Immunology: Marburg and Ebola Viruses. Vol. 235. Berlin: Springer-Verlag; 1999. p. 35-47.

Feldmann H, Klenk HD, Sanchez A. Molecular biology and evolution of filoviruses. Arch Virol Suppl 1993;7:81-100.

Rollin PE, Williams RJ, Bressler DS, Pearson S, Cottingham M, Pucak G, et al. Ebola (subtype Reston) virus among quarantined nonhuman primates recently imported from the Philippines to the United States. J Infect Dis 1999;179:S108-14.

Hayes CG, Burans JP, Ksiazek TG, Del Rosario RA, Miranda ME, Manaloto CR, et al. Outbreak of fatal illness among captive macaques in the Philippines caused by an Ebola-related filovirus. Am J Trop Med Hyg 1992;46:664-71.

Bwaka MA, Bonnet MJ, Calain P, Colebunders R, De Roo A, Guimard Y, et al. Ebola hemorrhagic fever in kiwit, Democratic Republic of the Congo: Clinical observations in 103 patients. J Infect Dis 1999;179:S1-7.

Nkoghé D, Formenty P, Nnégué S, Mvé MT, Hypolite I, Léonard P, et al. Recommandations pratiques pour la prise en charge sur le terrain des patients infectés par le virus Ebola. Med Trop 2004;64:199-204.

Smith DI. Ebola haemorrhagic fever in Sudan. 1976. Bull World Health Organ 1978;56:247-70.

Baron RC, McCormick JB, Zubeir OA. Ebola virus disease in Southern Sudan: Hospital dissemination and intrafamilial spread. Bull World Health Organ 1983;61:997-1003.

Martini GA. Marburg agent disease in man. Trans R Soc Trop Med Hyg 1969;63:295-302.

Smith CE, Simpson DI, Bowen ET. Fatal human disease from vervet monkeys. Lancet 1967;2:1119-21.

Smith DH, Isaacson M, Johnson KM, Bagshawe A, Johnson BK, Swanapoel R, et al. Marburg-virus disease in Kenya. Lancet 1982;1:816-20.

Turell MJ, Bressler DS, Rossi CA. Lack of virus replication in arthropods after intrathoracic inoculation of Ebola Reston virus. Am J Trop Med Hyg 1996;55:89-90.

Swanepoel R, Leman PA, Burt FJ. Experimental inoculation of plants and animals with Ebola virus. Emerg Infect Dis 1996;2:321-5.

Kunz C, Hofmann H, Aspöck H. Propagation of Marburg-virus (vervet monkey disease agent) in Aedes aegypti. Zentralbl Bakteriol Orig 1968;208:347-9.

Bowen ET, Platt GS, Lloyd G, Raymond RT, Simpson DI. A comparative study of strains of Ebola virus isolated from Southern Sudan and Northern Zaire in 1976. J Med Virol 1980;6:129-38.

Jahrling PB, Geisbert TW, Jaax NK, Hanes MA, Ksiazek TG, Peters CJ. Experimental infection of cynomolgus macaques with Ebola-Reston filoviruses from the 1989-1990 US epizootic. Arch Virol 1996;11:115-34.

WHO. Ebola Situation Report; 2016. Available from: http://www.who. int/csr/disease/ebola/en. [Last accessed on 2017 Jul 01].

Muhlberger E, Weik M, Volchkov VE, Klenk HD, Becker S. Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J Virol 1999;73:2333-42.

Bharat TA. Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proc Natl Acad Sci USA 2012;109:4275-80.

Huang Y, Xu L, Sun Y, Nabel GJ. The assembly of Ebola virus nucleocapsid virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Mol Cell 2002;10:307-16.

Wan W. Structure and assembly of the Ebola virus nucleocapsid. Nature 2017;551:394-7.

Hartlieb B, Modrof J, Muhlberger E, Klenk HD, Becker S. Oligomerization of Ebola virus VP30 is essential for viral transcription and can be inhibited by a synthetic peptide. J Biol Chem 2003;278:41830-6.

Nanbo A, Watanabe S, Halfmann P, Kawaoka Y. The spatio-temporal distribution dynamics of Ebola virus proteins and RNA in infected cells. Sci Rep 2013;3:1206.

Dolnik O, Stevermann L, Kolesnikova L, Becker S. Marburg virus inclusions: A virus-induced microcompartment and interface to multivesicular bodies and the late endosomal compartment. Eur J Cell Biol 2015;94:323-31.

Noda T, Watanabe S, Sagara H, Kawaoka Y. Mapping of the VP40-binding regions of the nucleoprotein of Ebola virus. J Virol 2007;81:3554-62.

Becker S, Klenk HD, Mühlberger E. Intracellular transport and processing of the Marburg virus surface protein in vertebrate and insect cells. Virology 1996;225:145-55.

Booth TF, Rabb MJ, Beniac DR. How do filovirus filaments bend without breaking? Trends Microbiol 2013;21:583-93.

Doytchinova IA, Flower DR. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 2007;8:4.

Prabhavathy K, Perumal P, Baalaji NS. In silico identification of B-and T-cell epitopes on OMPLA and LsrC from Salmonella typhi for peptide-based subunit vaccine design. Indian J Biotechnol 2011;10:440-51.

Singh H, Raghava G. ProPred1: Prediction of promiscuous MHC Class-I binding sites. Bioinformatics 2003;19:1009-14.

Singh H, Raghava G. ProPred: Prediction of HLA-DR bindingsites. Bioinformatics 2001;17:1236-7.

Sturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 1999;17:555-61.

Guan P, Doytchinova IA, Zygouri C, Flower DR. MHCPred: A server for quantitative prediction of peptide-MHC binding. Nucleic Acids Res 2003;31:3621-4.

Kangueane P, Sakharkar MK. T-Epitope designer: A HLA-peptide binding prediction server. Bioinformation 2005;1:21.

Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 2003;31:3381-5.

Wang LF, Harcourt BH, Yu M, Tamin A, Rota PA, Bellini WJ, et al. Molecular biology of hendra and nipah viruses. Microbes Infect 2001;3:279-87.

Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 2001;305:567-80.

Patronov A, Dimitrov I, Flower DR, Doytchinova I. Peptide binding prediction for the human class II MHC allele HLA-DP2: A molecular docking approach. BMC Struct Biol 2011;11:32.



How to Cite




Original Article(s)