IN SILICO ADME ANALYSIS AND MOLECULAR DOCKING APPLIED TO FLAVONOIDS TO FIND DRUG LEAD COMPOUNDS TARGETING DRD4
DOI:
https://doi.org/10.22159/ijms.2022.v10i4.45114Keywords:
ADME, molecular docking, flavonoids, DRD4, dopamine receptors, GlabroneAbstract
Objective: The aim of this present study is to find flavonoids that can be potential drug lead compounds targeting the human D(4) Dopamine receptor (DRD4). Thirty-nine flavonoids were collected from the literature survey, and 23 of them were predicted by SwissTargetPrediction to have bioactivity toward DRD4.
Methods: ADME properties were evaluated, and molecular docking was executed. Among the flavonoids studied, Isovitexin, Glabridin, and Glabrone have shown better binding energy than the native ligand, Nemonapride. However, ADME analysis has demonstrated that Isovitexin has low GI absorption and is in the grey zone of the BOILED-egg. Glabridin is a BBB permeant but is a P-gp substrate. Glabrone has high GI absorption, and a P-gp non-substrate but not a BBB permeant.
Results and Conclusion: The experimental investigations and clinical evaluations are recommended to examine the mechanisms of their actions and other pharmacological effects and to validate the results of this in silico study. The scaffolds of these compounds can also be optimized to improve the few lapses and have better attributes as CNS drug lead candidates.
References
Woods AS. The dopamine D4 receptor, the ultimate disordered protein. J Recept Signal Trans 2010;30:331-6.
Kuznetsova AY, Deth RC. A model for modulation of neuronal synchronization by D4 dopamine receptor-mediated phospholipid methylation. J Computat Neurosci 2008;24:314-29.
Deth R, Muratore C, Benzecry J, Power-Charnitsky VA, Waly M. How environmental and genetic factors combine to cause autism: A redox/ methylation hypothesis. Neurotoxicology 2008;29:190-201.
Verma A, Chauhan SS, Pankaj V, Srivastva N, Srivastava P. Network biology approaches to identify the drug lead molecule for neurodevelopmental disorders in human. Open Bioinform J 2020;13:15-24.
Seeman P, Guan HC, Van Tol HH. Dopamine D4 receptors elevated in schizophrenia. Nature 1993;365:441-5.
Tarazi FI, Zhang K, Baldessarini RJ. Dopamine D4 receptors: Beyond schizophrenia. J Recept Signal Transduct 2004;24:131-47.
Benjamin J, Li L, Patterson C, Greenberg BD, Murphy DL, Hamer DH. Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nat Genet 1996;12:81-4.
Ebstein RP, Novick O, Umansky R, Priel B, Osher Y, Blaine D, et al. Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of novelty seeking. Nat Genet 1996;12:78-80.
Di Ciano P, Grandy DK, Le Foll B. Dopamine D4 receptors in psychostimulant addiction. Adv Pharmacol 2014;69:301-21.
Manki H, Kanba S, Muramatsu T, Higuchi S, Suzuki E, Matsushita S, et al. Dopamine D2, D3 and D4 receptor and transporter gene polymorphisms and mood disorders. J Affect Disord 1996;40:7-13.
Bachner‐Melman R, Lerer E, Zohar AH, Kremer I, Elizur Y, Nemanov L, et al. Anorexia nervosa, perfectionism, and dopamine D4 receptor (DRD4). Am J Med Genet Part B Neuropsychiatr Genet 2007;144:748-56.
Levitan RD, Masellis M, Basile VS, Lam RW, Kaplan AS, Davis C, et al. The dopamine-4 receptor gene associated with binge eating and weight gain in women with seasonal affective disorder: An evolutionary perspective. Biol Psychiatry 2004;56:665-9.
Levitan RD, Masellis M, Lam RW, Muglia P, Basile VS, Jain U, et al. Childhood inattention and dysphoria and adult obesity associated with the dopamine D4 receptor gene in overeating women with seasonal affective disorder. Neuropsychopharmacology 2004;29:179-86.
Poston WS, Ericsson M, Linder J, Haddock CK, Hanis CL, Nilsson T, et al. D4 dopamine receptor gene exon III polymorphism and obesity risk. Eating Weight Disord Stud Anorexia Bulimia Obes 1998;3:71-7.
Yet L. In: Katritzky AR, Ramsden CA, Scriven EF, Taylor RJ, editors. Comprehensive Heterocyclic Chemistry III. Netherlands: Elsevier; 2008.
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci World J 2013;2013:162750.
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: Food sources and bioavailability. Am J Clin Nutr 2004;79:727-47.
Donato F, de Gomes MG, Goes AT, Borges Filho C, Del Fabbro L, Antunes MS, et al. Hesperidin exerts antidepressant-like effects in acute and chronic treatments in mice: Possible role of l-arginine-NO-cGMP pathway and BDNF levels. Brain Res Bull 2014;104:19-26.
Jesse CR, Donato F, Giacomeli R, Del Fabbro L, da Silva Antunes M, De Gomes MG, et al. Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+, K+-ATPase activity in the hippocampus and prefrontal cortex of mice: Antidepressant effect of chrysin. Neuroscience 2015;289:367-380.
Zhen L, Zhu J, Zhao X, Huang W, An Y, Li S, et al. The antidepressant-like effect of fisetin involves the serotonergic and noradrenergic system. Behav Brain Res 2012;228:359-66.
Zhang JC, Wu J, Fujita Y, Yao W, Ren Q, Yang C, et al. Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation. Int J Neuropsychopharmacol 2015;18:pyu077.
Hritcu L, Ionita R, Postu PA, Gupta GK, Turkez H, Lima TC, et al. Antidepressant flavonoids and their relationship with oxidative stress. Oxid Med Cell Longev 2017;2017:5762172.
Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JP. The neuroprotective potential of flavonoids: A multiplicity of effects. Genes Nutr 2008;3:115-26.
Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci 2016;5:e47.
Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr Comput Aided Drug Design 2011;7:146-57.
Lombardo F, Desai PV, Arimoto R, Desino KE, Fischer H, Keefer CE, et al. In silico absorption, distribution, metabolism, excretion, and pharmacokinetics (ADME-PK): Utility and best practices. An industry perspective from the international consortium for innovation through quality in pharmaceutical development: miniperspective. J Med Chem 2017;60:9097-113.
Kerns EH, Di L. Pharmaceutical profiling in drug discovery. Drug Discov Today 2003;8:316-23.
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res 2000;28:235-42.
BIOVIA, Dassault Systèmes, Discovery Studio (Client Version), San Diego: Dassault Systèmes; 2021.
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993;26:283-91.
Colovos C, Yeates TO. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci 1993;2;1511-9.
Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res 2014;42:W32-8.
Daina A, Zoete V. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016;11:1117.
Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev 2016;101:89-98.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2012;64:4-17.
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. In: Chemical Biology. New York: Humana Press; 2015. p. 243-50.
Arai M. Increased plasma arginine vasopressin levels in dopamine agonist-treated Parkinson’s disease patients. Neuroendocrinol Lett 2011;32:39.
Huang Y, Qiu AW, Peng YP, Liu Y, Huang HW, Qiu YH. Roles of dopamine receptor subtypes in mediating modulation of T lymphocyte function. Neuroendocrinol Lett 2010;31:782.
Matalka KZ, Attallah LJ, Qinna NA, Alhussainy T. Dopamine selectively modulates lipopolysaccharide-induced TNF-alpha, IFN-gamma and IL-10 within mice tissues. Neuroendocrinol Lett 2011;32:176-86.
Markianos M, Panas M, Kalfakis N, Hatzimanolis J, Vassilopoulos D. Neuroendocrine evidence of normal hypothalamus-pituitary dopaminergic function in Huntington’s disease. Neuroendocrinol Lett 2010;31:359-62.
Esch T, Stefano GB. The neurobiology of stress management. Neuroendocrinol Lett 2010;31:19-39.
Wong AH, Van Tol HH. The dopamine D4 receptors and mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:1091-9.
Ptáček R, Kuželová H, Stefano GB. Dopamine D4 receptor gene DRD4 and its association with psychiatric disorders. Med Sci Monit 2011;17:RA215.
van de Waterbeemd H, Camenisch G, Folkers G, Chretien JR, Raevsky OA. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J Drug Target 1998;6:151-65.
Feng S. Neurorestoratologic strategies and mechanisms in the nervous system. Biomed Res Int 2015;2015:163170.
Demeule M, Régina A, Jodoin J, Laplante A, Dagenais C, Berthelet F, et al. Drug transport to the brain: Key roles for the efflux pump P-glycoprotein in the blood-brain barrier. Vasc Pharmacol 2002;38:339-48.
Yu XY, Lin SG, Zhou ZW, Chen X, Liang J, Yu XQ, et al. Role of P-glycoprotein in limiting the brain penetration of glabridin, an active isoflavan from the root of Glycyrrhiza glabra. Pharm Res 2007;24:1668-90.
Amin ML. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 2013;7:DTI-S12519.
Cui YM, Ao MZ, Li W, Yu LJ. Effect of glabridin from Glycyrrhiza glabra on learning and memory in mice. Planta Med 2008;74:377-80.
Hosseinzadeh H, Nassiri‐Asl M. Pharmacological effects of Glycyrrhiza spp. and its bioactive constituents: Update and review. Phytother Res 2015;29:1868-86.
Quercia V, Turchetto L, Pierini N, Cuozzo V, Percaccio G. Identification and determination of vitexin and isovitexin in Passiflora incarnata extracts. J Chromatogr A 1978;161:396-402.
Brasseur T, Angenot L. The pharmacognosy of the passion flower. J Pharm Belgiq 1984;39:15-22.
Wolfman C, Viola H, Paladini A, Dajas F, Medina JH. Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol Biochem Behav 1994;47:1-4.
Soulimani R, Younos C, Jarmouni S, Bousta D, Misslin R, Mortier F. Behavioural effects of Passiflora incarnata L. and its indole alkaloid and flavonoid derivatives and maltol in the mouse. J Ethnopharmacol 1997;57:11-20.
Loftsson T. Physicochemical properties and pharmacokinetics. In: Essential Pharmacokinetics-a Primer for Pharmaceutical Scientists. Netherlands: Elsevier; 2015. p. 85-104.
Krüger A, Gonçalves Maltarollo V, Wrenger C, Kronenberger T. ADME profiling in drug discovery and a new path paved on silica. In: Drug Discovery and Development: New Advances. India: IntechOpen; 2019. p. 1-32.
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7:1-3.
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res 2019;47:D1102-9.
Yuan S, Chan HS, Hu Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip Rev Comput Mol Sci 2017;7:e1298.
Liu Y, Grimm M, Dai WT, Hou MC, Xiao ZX, Cao Y. CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol Sin 2020;41:138-44.
Huey R, Morris GM, Forli S. Using AutoDock 4 and AutoDock vina with AutoDockTools: A tutorial. Scripps Res Inst Mol Graph Lab 2012;10550:92037.
Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, et al. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res 2021;49:W530-4.
Published
How to Cite
Issue
Section
Copyright (c) 2022 SAMEER SHARMA
This work is licensed under a Creative Commons Attribution 4.0 International License.