LOADING OF CLARITHROMYCIN AND PACLITAXEL ON SYNTHESIZED CdS/NiO NANOPARTICLES AS PROMISING NANOCARRIERS

Authors

  • Mustafa R. Abdulbaqi
  • Nidhal K. Maraie Department of Pharmaceutics, College of Pharmacy, Al-Mustansiriya University, Baghdad, Iraq
  • Ashour H. Dawood

Keywords:

Nil, clarithromycin (CLA), paclitaxel (PTX), cadmium sulfide (CdS) nanoparticles, nickel oxide (NiO) nanoparticles

Abstract

Objective: In this study cadmium sulfide (CdS) and nickel oxide (NiO) nanoparticles were synthesized and applied as novel nanocarriers for antibacterial drug clarithromycin (CLA) and anticancer drug paclitaxel (PTX) to improve their physical properties and biological activities.

Methods: Cadmium sulfide (CdS) and nickel oxide (NiO) nanoparticles were synthesized by chemical co-precipitation and thermochemical processing techniques respectively and loaded with clarithromycin (CLA) and paclitaxel (PTX) by simple new one-step reaction. Analytical measures including FTIR, PXRD, SEM, AFM, TGA, DSC and zeta potential where used for characterization. The in vitro release, antibacterial as well as anticancer activities were evaluated.

Results: Analytical measures revealed that the loading involved physical complex formation rather than chemical modification with the high percent surface loading of the drugs on the nanoparticles. Solubility/dissolution study revealed higher significant* improvement in the solubility of CLA from NiO nanoparticles than that from CdS nanoparticles while the antibacterial activity of CLA was non-significantly improved. For PTX loaded on CdS and NiO nanoparticles showed non-significant change in its solubility, but remarkable significant* increase in its antitumor activity on MCF-7 cell line accompanied with significant* reduction in its cytotoxicity on normal mammary cell line (MCF-10A) indicating the selectivity and targeting of PTX-CdS/NiO nanocarriers with reduced side effects of the drug and the used metal nanocarriers.

Conclusion: This work provided most selective and safe delivery system for PTX and best method for enhancement of CLA solubility.

Keywords: Clarithromycin (CLA), Paclitaxel (PTX), Cadmium sulfide (CdS) nanoparticles, Nickel oxide (NiO) nanoparticles

 

Downloads

Download data is not yet available.

References

Qian WY, Sun DM, Zhu RR, Du XL, Liu H, Wang SL. pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release. Int J Nanomed 2012;7:5781-92.

Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007;2:1-6.

Hamouda IM. Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res 2012;26:143-51.

Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Delivery 2012;2012:1-12.

Salvadori MR, Nascimento CAO, Corrêa B. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus. Sci Rep 2014;4:1-6.

Raj KP, Sivakarthik P, Uthirakumar A, Thangaraj V. Cytotoxicity assessment of synthesized nickel oxide nanoparticles on MCF-7 and A-549 cancer cell lines. J Chem Pharm Sci 2014;2014:269-71.

Shao L, Gao Y, Yan F. Semiconductor quantum dots for biomedicial applications. Sensors 2011;11:11736-51.

Chen G, Yi B, Zeng G, Niu Q, Yan M, Chen A, et al. Facile green extracellular biosynthesis of CdS quantum dots by the white rot fungus Phanerochaete chrysosporium. Colloids Surf B 2014;117:199-205.

Wang LY, Wang L, Gao F, Yu ZY, Wu ZM. Application of functionalized CdS nanoparticles as fluorescence probe in the determination of nucleic acids. Analyst 2002;127:977-80.

Chen N, He Y, Su Y, Li X, Huang Q, Wang H, et al. The cytotoxicity of cadmium-based quantum dots. Biomaterials 2012;33:1238-44.

Hossain ST, Mukherjee SK. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells. J Hazard Mater 2013;260:1073-82.

Jain A, Gulbake A, Jain A, Shilpi S, Hurkat P, Kashaw S, et al. Development and validation of the HPLC method for simultaneous estimation of paclitaxel and topotecan. J Chromatogr Sci 2013;52:697-703.

Harisa GI. Blood viscosity as a sensitive indicator for paclitaxel-induced oxidative stress in human whole blood. Saudi Pharm J 2015;23:48-54.

Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution, and bioavailability. Asian J Pharm Sci 2014;9:304-16.

Yang FH, Zhang Q, Liang QY, Wang SQ, Zhao BX, Wang YT, et al. Bioavailability enhancement of paclitaxel via a novel oral drug delivery system: paclitaxel-loaded glycyrrhizic acid micelles. Molecules 2015;20:4337-56.

Patingrao DL, Kadu P. Formulation and evaluation of clarithromycin gastro retentive dosage form. J Chem Pharm Res 2014;6:82-9.

Adzitey F. Antibiotic classes and antibiotic susceptibility of bacterial isolates from selected poultry; a mini review. World Vet J 2015;5:36-41.

Morakul B, Suksiriworapong J, Leanpolchareanchai J, Junyaprasert VB. Precipitation-lyophilization-homogenization (PLH) for the preparation of clarithromycin nanocrystals: influencing factors on physicochemical properties and stability. Int J Pharm 2013;457:187-96.

Rao BS, Kumar BR, Reddy VR, Rao TS. Preparation and characterization of CdS nanoparticles by chemical co-precipitation technique. Chalcogenide Lett 2011;8:177-85.

Adekunle AS, Oyekunle JA, Oluwafemi OS, Joshua AO, Makinde WO, Ogunfowokan AO, et al. Comparative catalytic properties of Ni (OH) 2 and NiO nanoparticles towards the degradation of nitrite (NO2-) and nitric oxide (NO). Int J Electrochem Sci 2014;9:3008-21.

Mohammadijooa M, Khorshidia ZN, Sadrnezhaadb S, Mazinanic V. Synthesis and characterization of nickel oxide nanoparticle with wide band gap energy prepared via thermochemical processing. Nanosci Nanotechnol: Int J 2014;4:6-9.

Ranjiit K, AbdulBaquee A. Nanoparticle: an overview of preparation, characterization, and application. Int Res J Pharm 2013;4:47-57.

Liggins R, Burt H. Polyether–polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv Drug Delivery Rev 2002;54:191-202.

Sekar RP, Elango K, Damayanthi D, Saranya JS. Formulation and evaluation of azathioprine loaded silver nanopartilces for the treatment of rheumatoid arthritis. Asian J Biomed Pharm Sci 2013;3:28-32.

Bykkam S, Ahmadipour M, Narisngam S, Kalagadda VR, Chidurala SC. Extensive studies on X-Ray diffraction of green synthesized silver nanoparticles. Adv Nanopart 2015;4:1-10.

Heera P, Shanmugam S. Nanoparticle characterization and application: an overview. Int J Curr Microbiol Appl Sci 2015;4:379-86.

Pal SL, Jana U, Manna P, Mohanta G, Manavalan R. Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 2011;1:228-34.

Elias A, Crayton SH, Warden-Rothman R, Tsourkas A. Quantitative comparison of tumor delivery for multiple targeted nanoparticles simultaneously by multiplex ICP-MS. Sci Rep 2014;4:1-9.

Sierra-Ãvila R, Pérez-Alvarez M, Cadenas-Pliego G, Padilla VC, Ãvila-Orta C, Camacho OP, et al. Synthesis of copper nanoparticles using a mixture of allylamine and polyallylamine. J Nanomater 2015;2015:1-9.

El-Zaher NA, Melegy MS, Guirguis OW. Thermal and structural analyses of PMMA/TiO 2 nanoparticles composites. Nat Sci 2014;6:859-70.

Bande F, Arshad SS, Hair Bejo M, Abdullahi Kamba S, Omar AR. Synthesis and characterization of chitosan-saponin nanoparticle for application in plasmid DNA delivery. J Nanomater 2015;2015:1-8.

Chan JC, Hannah-Moore N, Rananavare SB. Controlled deposition of tin oxide and silver nanoparticles using microcontact printing. Crystals 2015;5:116-42.

Moosa AA, Ridha AM, Al-Kaser M. Process parameters for green synthesis of silver nanoparticles using leaves extract of Aloe Vera plant. Int J Multidisciplinary Curr Res 2015;3:966-75.

Filippousi M, Papadimitriou SA, Bikiaris DN, Pavlidou E, Angelakeris M, Zamboulis D, et al. Novel core–shell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers: Preparation, characterization and release properties. Int J Pharm 2013;448:221-30.

Gavini V, Murthy MS, Kumar PK. Formulation and in vitro evaluation of nanoparticulate drug delivery system loaded with 5-fluorouracil. Res J Pharm Dosage Forms Technol 2014;6:243-8.

Shahbaziniaz M, Foroutan SM, Bolourchian N. Dissolution rate enhancement of clarithromycin using ternary ground mixtures: nanocrystal formation. Iran J Pharm Res 2013;12:587-98.

Pandey S, Kumar S. Evaluation of the effect of hydrophilic polymer blend to extend the release of clarithromycin from prepared microcapsules. J Pharm Sci Res 2010;2:759-66.

Ahmad J, Mir SR, Kohli K, Chuttani K, Mishra AK, Panda A, et al. Solid-nanoemulsion preconcentrate for oral delivery of paclitaxel: formulation design, biodistribution, and γ scintigraphy imaging. BioMed Res Int 2014;2014:1-12.

Elsayed I, Abdelbary AA, Elshafeey AH. Nanosizing of a poorly soluble drug: technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers. Int J Nanomed 2014;9:2943-53.

Valizadeh H, Mohammadi G, Ehyaei R, Milani M, Azhdarzadeh M, Zakeri-Milani P, et al. Antibacterial activity of clarithromycin loaded PLGA nanoparticles. Pharmazie 2012;67:63-8.

Ramezani V, Vatanara A, Najafabadi AR, Moghaddam SPH. Clarithromycin dissolution enhancement by preparation of aqueous nanosuspensions using so no precipitation technique. Iran J Pharm Res 2014;13:809-18.

Wang L, Li H, Wang S, Liu R, Wu Z, Wang C, et al. Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech 2014;15:834-44.

Adesina SK, Holly A, Kramerâ€Marek G, Capala J, Akala EO. Polylactideâ€based paclitaxelâ€loaded nanoparticles fabricated by dispersion polymerization: characterization, evaluation in cancer cell lines, and preliminary biodistribution studies. J Pharm Sci 2014;103:2546-55.

Liebmann J, Cook J, Lipschultz C, Teague D, Fisher J, Mitchell J. Cytotoxic studies of paclitaxel (Taxol) in human tumour cell lines. Br J Cancer 1993;68:1104-9.

Lin Y, Jiang D, Li Y, Han X, Yu D, Park JH, et al. Effect of sun ginseng potentiation on epirubicin and paclitaxel-induced apoptosis in human cervical cancer cells. J Ginseng Res 2015;39:22-8.

Prasath M, Arun RB, Revathy R. Synthesis and characterization of Mn2+doped CdS nanoparticles. J Chem Pharm Res 2015;7:875-85.

Kishore N, Mukherjee S. Synthesis, and characterization of mixed ferrites. Int J Sci Res Publications 2014;4:1-5.

Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res 2013;12:265-73.

Zakeri-Milani P, Islambulchilar Z, Majidpour F, Jannatabadi E, Lotfipour F, Valizadeh H. A study on enhanced intestinal permeability of clarithromycin nanoparticles. Braz J Pharm Sci 2014;50:121-9.

Bhoskar M, Patil P. Develop and evaluation of paclitaxel-loaded nanoparticles using 24 factorial design. Int J Curr Pharm Res 2015;7:64-72.

Zhao Z, Li Y, Zhang Y. Preparation and characterization of paclitaxel loaded SF/PLLA-PEG-PLLA nanoparticles via solution-enhanced dispersion by supercritical CO2. J Nanomater 2015;2015:1-7.

Hiremath JG, Khamar NS, Palavalli SG, Rudani CG, Aitha R, Mura P. Paclitaxel-loaded carrier based biodegradable polymeric implants: preparation and in vitro characterization. Saudi Pharm J 2013;21:85-91.

Derman S, Mustafaeva ZA, Abamor ES, Bagirova M, Allahverdiyev A. Preparation, characterization and immunological evaluation: canine parvovirus synthetic peptide loaded PLGA nanoparticles. J Biomed Sci 2015;22:1-12.

Smitha K, Anitha A, Furuike T, Tamura H, Nair SV, Jayakumar R. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery. Colloids Surf B 2013;104:245-53.

Ganesh M, Ubaidulla U, Hemalatha P, Peng MM, Jang HT. Development of duloxetine hydrochloride loaded mesoporous silica nanoparticles: characterizations and in vitro evaluation. AAPS PharmSciTech 2015;16:944–51.

Tuncer Degim I, Kadioglu D. Cheap, suitable, predictable and manageable nanoparticles for drug delivery: quantum dots. Curr Drug Delivery 2013;10:32-8.

Martins KF, Messias AD, Leite FL, Duek EA. Preparation and characterization of paclitaxel-loaded PLDLA microspheres. Mater Res 2014;17:650-6.

Kumar A, Singh N, Kaushik D. Taste masking of clarithromycin using complexation with ion exchange resin. Int J PharmTech Res 2014;6:203-11.

Thadkala K, Nanam PK, Rambabu B, Sailu C, Aukunuru J. Preparation and characterization of amorphous ezetimibe nanosuspensions intended for enhancement of oral bioavailability. Int J Pharm Invest 2014;4:131-7.

Esfandyari-Manesh M, Mostafavi SH, Majidi RF, Koopaei MN, Ravari NS, Amini M, et al. Improved anticancer delivery of paclitaxel by albumin surface modification of PLGA nanoparticles. DARU J Pharm Sci 2015;23:1-8.

Onishi Y, Eshita Y, Ji RC, Onishi M, Kobayashi T, Mizuno M, et al. Anticancer efficacy of a supramolecular complex of a 2-diethylaminoethyl–dextran–MMA graft copolymer and paclitaxel used as an artificial enzyme. Beilstein J Nanotechnol 2014;5:2293-307.

Ma P, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol 2013;4:1-35.

Tang X, Cai S, Zhang R, Liu P, Chen H, Zheng Y, et al. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment. Nanoscale Res Lett 2013;8:1-12.

Vinardell Martínez-Hidalgo MP, Mitjans Arnal M. Antitumor activities of metal oxide nanoparticles. Nanomaterials 2015;5:1004-21.

Published

01-05-2016

How to Cite

Abdulbaqi, M. R., N. K. Maraie, and A. H. Dawood. “LOADING OF CLARITHROMYCIN AND PACLITAXEL ON SYNTHESIZED CdS/NiO NANOPARTICLES AS PROMISING NANOCARRIERS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 5, May 2016, pp. 322-33, https://journals.innovareacademics.in/index.php/ijpps/article/view/11320.

Issue

Section

Original Article(s)