• Siew Yong Teo School of Postgraduate Studies and Research, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
  • Siang Yin Lee School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
  • Michael J. Rathbone ULTI Pharmaceuticals, 19 Pembroke Street, Hamilton Lake, Hamilton, 3204, New Zealand
  • Seng Neon Gan Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia




Topical delivery, polyester, polyamide, polyurethane, polyanhydride, agro-polymer, polysaccharide, protein, lipid


With the emergence of novel and more effective drug therapies, increased importance is being placed upon the drug delivery technology. Topical formulations are attractive alternatives to oral formulations and offer several advantages, such as avoiding first-pass hepatic metabolism and gastric degradation. The major obstacle to drug delivery across the skin (transdermal) is the barrier nature of the skin which limits permeation of molecules. A wide range of polymeric materials is currently available for drug delivery to and across the skin. The synthetic polymers such as polyesters, polyamides, polyurethanes, polyanhydrides and poly(ortho-esters) display advantages of reproducibility of synthesis, a range of material properties and biodegradability, whereas agro-polymers like polysaccharides, proteins and lipids have already shown great promise in terms of type of material, range of properties, processing technique and biocompatibility. This review article summarizes features of different polymers and their potential applications in topical drug delivery system.


Download data is not yet available.


Bhowmik D, Gopinath H, Kumar BP, Kumar KPS. Recent advances in novel topical drug delivery system. Pharma Innovation 2012;1(9):12-31.

Yadav VK, Gupta AB, Kumar R, Yadav JS, Kumar B. Mucoadhesive polymers: means of improving the mucoadhesive properties of drug delivery system. J. Chem. Pharm. Res. 2010;2(5):418-32.

Webster JG. Encyclopedia of medical devices and instrumentation, 2nd ed. New York: John Wiley & Sons, p. 437-95.

Kumar KPS, Bhowmilk D, Chiranjib, Chandira M, Tripathi KK. Innovations in sustained release drug delivery system and its market opportunities. J. Chem. Pharm. Res 2012;2(1):349-60.

Verma P, Thakur AS, Deshmukh K, Jha DRAK, Verma S. Routes of drug administration. IJPSR 2010;1(1):54-9.

Kwatra S, Taneja G, Nasa N. Alternative routes of drug administration- transdermal, pulmonary & parenteral. Indo Global J Pharm Sci 2012;2(4):409-26.

Chandel A, Parashar B, Gupta N, Kumar A, Sharma V. An overview on the gel formulation. Int J Pharm Sci Rev Res 2013;3(1):18-22.

Bharadwaj S, Gupta GD, Sharma VK. Topical gel: a novel approach for drug delivery. J Chem, Biol Phys Sci 2012;2:2856-67.

Shankar PB, Manohar SD, Bhanudas SR. Patches: A Novel approach for development of topical drug delivery system. J Adv Pharm Educ Res 2013;3(4):347-58.

Lakshmi PK, Kumar MK, Sridharan A, Bhaskaran S. Formulation and evaluation of ibuprofen topical gel: a novel approach for penetration enhancement. Int J Appl Pharm 2011;3(3):25-30.

Hyma P, Noor J, Raheemunissa, Sreelekha G, Babu K. Emulgel: A review. IJPA 2014;3(3):1-11.

Chittodiya P, Tomar RS, Ramchandani U, Manocha N, Agrawal S. Topical gel - A review. IJPBA 2013; 4(4):606-13.

Mbah CJ, Uzor PF, Omeje EO. Perspectives on transdermal drug delivery. J Chem Pharm Res 2011;3(3):680-700.

Kadajji VG, Betageri GV. Water soluble polymers for pharmaceutical applications. Polymers 2011;3:1972-2009.

Chen Y, Tan L, Chen L, Yang Y, Wang X. Study on biodegradable aromatic/aliphatic copolyesters. Braz J Chem Eng 2008;25(2):321-35.

Lodhi B, Parikh G, Gajare G, Dharashive A, Shinde S. Shrewd natural and synthetic biodegradable polymers for targeted sustain and controlled release formulation. J Innovations Pharm Biol Sci 2014;1(3):102-16.

Mohammadnia MS, Salaryan P, Azimi ZK, Seyidov FT. Preparation and characterization of polyesters with controlled molecular weight method. IJCBS 2012;2:36-41.

Tanaka H, Iwanaga Y, Wu GC, Sanui K, Ogata N. Synthesis of polyesters by direct polycondensation with picryl chloride. Polym J 1982;14(8):643-8.

Singh V, Tiwari M. Structure-processing-property relationship of poly(glycolic acid) for drug delivery systems 1: synthesis and catalysis. Int J Polym Sci 2010;1-23.

Battistella E, Varoni E, Cochis A, Palazzo B, Rimondini L. Degradable polymers may improve dental practice. J Appl Biomater Biomech 2011;9(3):223-31.

Ei-fattah AA, Kenawy ER, Kandil S. Biodegradable polyesters as biomaterials for biomedical applications. Int J Chem Appl Biol Sci 2015;1:2-11.

Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007;32:762-98.

Fambri L, Migliaresi C. Poly(lactic acid): Synthesis, structures, properties, processing, and applications. In: Crystallization and thermal properties. New York: John Wiley & Sons; 2010. p. 113-24.

Oliveira JE, Mattoso LHC, Orts WJ, Medeiros ES. Structural and morphological characterization of micro and nanofibers produced by electrospinning and solution blow spinning: A comparative study. Adv Mater Sci Eng 2013;1-14.

Furrer PC. Medium-chain-length poly([R]-3-hydroxyalkanoates): from biosynthesis towards medical applications [PhD thesis]. Switzerland, Dipl. Chem. University of Basel;1976.

Divya G, Archana T, Manzano RA. Polyhydroxy alkanoates – A sustainable alternative to petro-based plastics. J Pet Environ Biotechnol 2013;4(3):1-8.

Lee SH, Wang S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites: Part A 2006;37:80-91.

Schenck, R., Huizenga, D. (Eds.), 2014. Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014), 8-10 October 2014, San Francisco, USA. ACLCA, Vashon, WA, USA.

Anstey A, Muniyasamy S, Reddy MM, Misra M, Mohanty A. Processability and biodegrability evaluation of composites from poly(butylene succinate) (PBS) bioplastic and biofuel co-products from Ontario. J Polym Environ 2014: 22(2):209-18.

Costa-Pinto AR, Martins AM, Castelhano-Carlos MJ, Correlo VM, Sol PC, Longatto-Filho A, Battacharya M, Reis RL, Neves NM. In vitro degradation and in vivo biocompatibility o chitosan-poly(butylene succinate) fiber mesh scaffolds. J Bioact Compat Polym 2014;29(2):137-51.

Moore T, Adhikari R, Gunatillake P. Chemosynthesis of bioresorbable poly(Ï“-butyrolactone) by ring-opening polymerisation: A review. Biomaterials 2005;26:3771-82.

Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 2011;49(12):832-64.

Linhart W, Peters F, Lehmann W, Schwarz K, Schilling AF, Amling M, Rueger JM, Epple M. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res 2001;54:162–71.

Agrawal CM, Niederauer GG, Athanasiou KA. Fabrication and characterization of PLA-PGA orthopedic implants. Tissue Eng 1995;1(3):241-53.

Bagheri S, Mohammadi-Rovshandeh J, Hassan A. Synthesis and Characterization of Biodegradable Random Copolymers of L-Lactide, Glycolide and Trimethylene Carbonate. Iran Polym J 2007;16(7):489-94.

Makadia HK, Siegel SJ. Polylactic-co-glycolicacid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011;3:1377-97.

Lopes MS, Jardini AL, Filho RM. Synthesis and characterizations of poly (lactic acid) by ring-opening polymerization for biomedical applications. CEt 2014;38:331-6.

Pawar PA, Purwar AH. Bioderadable Polymers in Food Packaging. AJER 2013;2(5):151-64.

Purnama P, Jung Y, Hong CH, Han DS, Kim SH. Synthesis of poly(D-lactide) with different molecular weight via melt-polymerization. Macromol Res 2012;20(5):515-9.

Xiao L, Wang B, Yang G, Gauthier M. Poly(lactic acid)-based biomaterials: Synthesis, modification and applications. Biomed Sci, Eng Technol 2012: 247-82.

Rancan F, Todorova A, Hadam S, Papakostas D, Luciani E, Graf C, Gernert U, Rühl, Verrier B, Sterry W, Blume-Peytavi U, Vogt A. Stability of polylactic acid particles and release of fluorochromes upon topical application on human skin explants. Eur J Pharm Biopharm 2012;80(1):76-84.

Gentile P, Chiono V, Carmagnola I, Hatton PV. An Overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 2014;15:3640-59.

Boddu SHS, Jwala J, Vaishya R, Earla R, Karla PK, Pal D, Mitra AK. Novel nanoparticulate gel formulations of steroids for the treatment of macular edema. J Ocul Pharmacol Ther 2010;26(1):37-48.

Azhdarzadeh M, Lotfipour F, Zakeri-Milani P, Mohammadi G, Valizadeh H. Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram-negative and grampositive bacteria. Adv Pharm Bull 2012;2(1):17-24.

Badilli U, Sen T, Tarimci N. Microparticulate based topical delivery system of clobetasol propionate. AAPS PharmSciTech 2011;12(3):949-57.

De Jalόn EG, Blanco-Príeto MJ, Ygartua P, Santoyo S. PLGA microparticles: possible vehicles for topical drug delivery. Int J Pharm 2001;226(1-2):181-4.

Hrynyk M, Martins-Green M, Barron AE, Neufeld RJ. Sustained prolonged topical delivery of bioactive human insulin for potential treatment of cutaneous wounds. Int J Pharm 2010;398(1-2):146-54.

Shi L, Wang X, Zhao F, Luan H, Tu Q, Huang Z, Wang H, Wang H. In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles. Int J Nanomed 2013;8:2669-76.

Zoltowska K, Sobczak M, Oledzka E. Novel zinc-catalytic systems for ring-opening polymerization of ε-caprolactone. Molecules 2015;20:2816-27.

Wang TJ, Wang IJ, Lu JN, Young TH. Novel chitosan-polycaprolactone blends as potential scaffold and carrier for corneal endothelial transplantation. Mol Vision 2012;18:255-64.

Azimi B, Nourpanah P, Rabiee M, Arbab S. Poly (ε-caprolactone) Fiber: An overview. J Eng Fibers Fabr 2014;9(3):74-90.

Saeed K, Park SY. Preparation and Properties of polycaprolactone/poly (butylene terephthalate) blend. Iran J Chem Eng 2010;29(3):77-81.

Intranuovo F, Gristina R, Brun F, Mohammadi S, Ceccone G, Sardella E, Rossi F, Tromba G, Favia P. Plasma modification of PCL porous scaffolds fabricated by solvent casting/particulate leaching for tissue engineering. Plasma Processes Polym 2014;11(2):184-95.

Macedo FA, Nunes EHM, Vasconelos WL, Santos RA, Sinisterra RD, Cortes ME. A biodegradable porous composite scaffold of PCL/BCP containing Ang-(1-7) for bone tissue engineering. Ceramica 2012;58:481-8.

Rosado C, Silva C, Reis CP. Hydrocortisone-loaded poly(É›-caprolactone) nanoparticles for atopic dermatitis treatment. Pharm Dev Technol 2012;1-9.

Madison LL, Huisman GW. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol Mol Biol Rev 1999;63:21-53.

Jain S, Singh AK, Tiwari A. Poly (3-hydroxyalkanoates): Biodegradable plastics. Res Rev: J Chem 2014;3(1):11-4.

Anushri S, Archana T. Polyhydroxyalkonates: Green plastics of the future. IJBAR 2011;02(09):356-67.

Kimura H, Yamamoto T, Iwakura K. Biosynthesis of polyhydroxyalkanoates from 1,3-Propanediol by chromobacterium sp. Polym J 2002;34(9):659-65.

Singh AK, Mallick N. Enhanced production of SCL-LCL-PHA co-polymer by sludge-isolated Pseudomonas aeruginosa MTCC 7925. Lett Appl Microbiol 2008;46:350-57.

Terpe K, Kerkhoff K, Pluta E, Jendrossek D. Relationship between succinate transport and production of extracellular poly(3-hydroxybutyrate) depolymerase in Pseudomonas lemoignei. Appl Environ Microbiol 1999;65(4):1703-9.

Wang Z, Itoh Y, Hosaka Y, Kobayashi I, Nakano Y, Maeda I, Umeda F, Yamakawa J, Kawase M, Yagi K. Novel transdermal drug delivery system with polyhydroxyalkanoate and starburst polyamidoamine dendrimer. J Biosci Bioeng 2003;95(5):541-3.

Eke G, Kuzmina AM, Goreva AV, Shishatskaya EI, Hasirci N, Hasirci V. In vitro and transdermal penetration of PHBV micro/ nanoparticles. J Mater Sci: Mater Med 2014;25(6):1471-81.

Vassiliou AA, Bikiaris D, Mabrouk KE, Kontopoulou M. Effect of evolved interactions in poly(butylene succinate)/ fumed silica biodegradable In Situ prepared nanocomposites on molecular weight, material properties, and biodegradability. J Appl Polym Sci 2011;119:2010-24.

Xu J, Guo BH. Microbial succinic acid, its polymer poly(butylene succinate), and applications. In: Chen GQ, editor. Plastics from bacteria: natural functions and applications Berlin Heidelberg: Springer 2010;14:347-88.

Wang H, Feng H, Wang X, Guo P, Zhao T, Ren L, Qiang X. Effects of crystallization temperature and blend ratio on the crystal structure of poly(butylene adipate) in the poly(butylene adipate)/poly(butylene succinate) blends. Chin J Polym Sci 2014;32(4):488-96.

Brunner CT, Baran ET, Pinho ED, Reis RL, Neves NM. Performance of biodegradable microcapsules of poly(butylene succinate), poly(butylene succinate-co-adipate) and poly(butylene terephthalate-co-adipate) as drug encapsulation systems. Colloids Surf B 2011;84(2):498-507.

Marsh K, Bugusu B. Food packaging – roles, materials and environmental issues. J Food Sci 2007;72(3):39-55.

Imai Y, Nemoto H, Watanabe S, Kakimoto M. A new facile and rapid synthesis of aliphatic polyamides by microwave-assisted polycondensation of ω-amino acids and nylon salts. Polym J 1996;28(3):256-60.

Sun H, Cheng R, Deng C, Meng F, Dias AA, Hendriks M, Feijen j, Zhong Z. Enzymatically and reductively degradable α‑amino acid-based poly(ester amide)s: Synthesis, cell compatibility, and intracellular anticancer drug delivery. Biomacromolecules 2015;16:597-605.

Howard GT. Biodegradation of polyurethane:a review. Int Biodeterior Biodegrad 2002;49:245-52.

Semsarzadeh MA, Sadeghi M, Barikani M, Moadel H. The effect of hard segments on the gas separation properties of polyurethane membranes. Iran Polym J 2007;16(12):819-27.

Azzam RA, Madkour TM. Molecular design, synthesis and analysis of new hydrophobic seafoams with augmented uptake capacity. Int J Energy Environ 2008;2(1):56-65.

Ang KP, Lee CS, Cheng SF, Chuah CH. Polyurethane wood adhesive from palm oil-based polyester polyol. J Adhes Sci Technol 2014;1-14.

Szezurek A, Pizzi A, Delmotte L, Celzard A. Reaction mechanism of hydroxymethylated resorcinol adhesion promoter in polyurethane adhesives for wood bonding. J Adhes Sci Technol 2010;24(8-10):1577-82.

Saito Y, Nansai S, Kinoshita S. Structural studies on polyurethane fibers. I. Crystal and molecular structures of aliphatic polyurethanes from hexamethylene diisocynate and some linear glycols. Polym J 1972;3(2):113-21.

Chen XD, Zhou NQ, Zhang H. Preparation and properties of cast polyurethane elastomers with molecularly uniform hard segments based on 2,4-toluene diisocyanate and 3,5-dimethyl-thioltoluenediamine. J Biomed Sci Eng 2009;2:245-53.

Ching YC, Syamimie N. Effect of nanosilica filled polyurethane composite coating on polypropylene substrate. J Nanomater 2013;1-8.

Dong A, zhang T. Paclitaxel release from polyether-anhydrides prepared with UV-curing process. Int J of Polym Sci 2013;2013:1-6.

Chandra R, Rustgi R. Biodegradable polymers. Prog Polym Sci 1998;23:1273-1335.

Determan AS, Trewyn BG, Lin VSY, Nilsen-Hamilton M, Narasimhan B. Encapsulation, stabilization, and release of BSA-FITC from polyanhydride microspheres. J Controlled Release 2004;100:97-109.

Burkoth AK, Anseth KS. A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials 2000;21:2395-404.

Jain JP, Modi S, Domb AJ, Kumar N. Role of polyanhydrides as localized drug carriers. J Controlled Release 2005;103:541-63.

Tamariz E, Rios-Ramirez A. Biodegradation of medical purpose polymeric materials and their impact on biocompatibility. In: Chamy R, ed. Biodegradation. - Life of Science. InTech; 2013. p. 3-29.

Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007;32:762-98.

Heller J, Barr J, Ng SY, Abdellauoi KS, Gurny R. Poly(ortho esters): Synthesis, characterization, properties and uses. Adv Drug Delivery Rev 2002;54(7):1015-39.

Tehrani MA, Akbari A, Majumder M. Polylactic acid (PLA) layered silicate nanocomposites. In: Pandey JK, Reddy KR, Mohanty AK, Misra M, editors. Handbook of polymernanocomposites. Processing, performance and application – volume A: Layered silicates. New York: Springer-Verlag Berlin Heidelberg; 2014. p.53-67.

Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Simon P, Svetec DG, Virtanen S, Baschetti MG, Breen C, Clegg F, Aucejo S. Renewable fibers and bio-based materials for packaging applications – A review of recent developments. Bioresources.com. 2012;7(2):1-47.

Bourtoom T. Edible protein films: properties enhancement. Int Food Res J 2009;16:1-9.

Cumpstey I. Chemical modification of polysaccharides. ISRN Org Chem 2013;2013:1-27.

Bajpai VK, Rather IA, Lim J, Park YH. Diversity of bioactive polysaccharide originated from marine sources: A review. Indian J Geo-Mar Sci 2014;43(10):1-13.

Klompong V, Benjakul S, Kantachote D, Shahidi F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem 2007;102:1317-27.

Ruttarattanamongkol K. Functionalization of whey proteins by reactive supercritical fluid extrusion. Songklanakarin J Sci Technol 2012;34(4):395-402.

Gomes S, Leonor IB, Mano JF, Reis RL, Kaplan DL. Natural and genetically engineered proteins for tissue engineering. Prog Polym Sci 2012;37(1):1-17.

Budja M. Neolithic pottery and the biomolecular archaeology of lipids. Documenta Praehistorica XLI 2014;196-224.

Dhana LP, Rahul N, Chakrapani M, Venkatkrishnakiran P. Recent advances based on solid lipid nanoparticle systems for delivery of drugs. Asian J Pharm Res 2012;2(2):81-96.

Shrestha H, Bala R, Arora S. Lipid-based drug delivery systems. J Pharm 2014:1-10.

Dua JS, Rana AC, Bhandari AK. Liposome: Methods of preparation and applications. IJPSR 2012;3(2):1-7.

Lason E, Ogonowski J. Solid lipid nanoparticle – characteristics, application and obtaining. CHEMIK 2011;65(10):960-67.

Anuchapreeda S, Fukumori Y, Okonogi S, Ichikawa H. Preparation of lipid nanoemulsions incorporating curcumin for cancer therapy. J Nanotechnol 2012; 1-11.

Zheng Z, Tsaib PC, Ramezanlib T, Bozena B, Kohna M. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Interdiscip Rev Nanomed Nanobiotechnol 2013;5(3):205-18.

Almeida H, Amaral MH and Lobão P. Temperature and pH stimuli-responsive polymers and their applications in controlled and selfregulated drug delivery. J Appl Pharm Sci 2012; 01-10.



How to Cite

Teo, S. Y., S. Y. Lee, M. J. Rathbone, and S. N. Gan. “POLYMERIC MATERIALS AS PLATFORMS FOR TOPICAL DRUG DELIVERY: A REVIEW”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 9, no. 1, Jan. 2017, pp. 14-20, doi:10.22159/ijpps.2017v9i1.13306.



Review Article(s)