FEASIBILITY STUDY FOR PRODUCTION OF IODINE-131 USING DIOXIDE OF TELLURIUM-130

Authors

  • Abdessamad Didi Laboratory of Integration System and Technology Advanced (LISTA), Department of Physics, Faculty of Science Dhar Mahraz, University of Sidi Mohamed Ben Abdellah Fez MOROCCO
  • Ahmed Dadouch
  • Hassane El Bekkouri Laboratory of Integration System and Technology Advanced (LISTA), Department of Physics, Faculty of Science Dhar Mahraz, University of Sidi Mohamed Ben Abdellah Fez MOROCCO

DOI:

https://doi.org/10.22159/ijpps.2016v8i11.13595

Keywords:

Iodine-131, Tellurium, Neutron activation, Thyroid, Cancer, Nuclear medicine, Becquerel

Abstract

Objective: Currently, nuclear medicine is becoming increasingly important, through the discovery of several medical radioisotopes, which are used in diagnosis, treatment, and medical imaging. Among the most important radionuclide which is commonly used is iodine-131, with a half-life of 8.02 d. Iodine-131 is one of the mainly essential elements in nuclear medicine. Since their first use, several studies have been conducted to meet the world need of hospital specialists in nuclear medicine. The purpose of this study was to participate in a lawsuit about the feasibility of producing 131I.

Methods: using neutron activation of the dioxide of tellurium (TeO2) under a neutron flux which varies between 5 1011 and 1013 n/cm²s for 4, 6 and 8 hours** per irradiation cycle during 5 d, and used the Fortron90 Code to calculate the activity of iodine-131.

Results: The result of the activity of iodine-131 found about 4,634 Curie with an irradiation of 4 hours** per day and 9.381 Curie with an activation of 8 hours** per day.

Conclusion: Production of iodine-131 can be very effective if an acceptable capsule is used for different masses of tellurium and a neutron flux in a nuclear reactor.

Downloads

Download data is not yet available.

References

Mbodj M, Guerrouj H, Amjad I, Ben Rais NA. Contribution of radio-iodine 131 in the treatment of Grave’s Basedow disease in the department of nuclear medicine of Ibn sina hospital in rabat. J Med Nucl 2009;33:592–8.

Schlienger JL, Goichot B, Grunenberge F. Iode et fonction thyroïdienne. La Revue Méd Int 1997;9:709–16.

Maged Abdel Galil Hamed, Ahmed Fathy Abdel Ghany, Noha Mohamed Osman. The diagnostic usefulness of FDG-PET/CT in detecting tumor recurrence not evident in whole body I-131 scan in differentiated thyroid carcinoma. Egyptian J Radiol Nucl Med 2014;45:361-5.

René Caquet. Temps de lyse des euglobulines, 250 examens de laboratoire. 11th édition; 2010. p. 211–2.

Wémeau JL. Chapitre 17-Iode et thyroïde Les maladies de la thyroïde; 2010. p. 141–8.

Taïeb D, Guille DA, Mundler LO. Guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. J Med Nucl 2008;32:101–10.

Vitaux F. Thyroid gland irradiations and thyroid cancers critical bibliographic journal. J Med Nucl 2007;31:350–5.

Intidhar El Bez. Cancer de la thyroïde et ablation par iode 131 sous thyrogen: quand doser la thyroglobuline? Ann Endocrinol 2013;74:156.

Spagnoli V, Azzalini L, Tadros VX, Picard F, Ly HQ. Contrast-induced nephropathy: an update. Ann Cardiol Angeiol 2016;65:87–94.

Guerrouj H, Elamrani M, GhfirI, Ben Rais N. Apport de l’iode 131 dans le traitement de l’adénome thyroïdien toxique. J Med Nucl 2012;36:561–4.

Boisserie G, Hasboun D. Utilisation de l’imagerie multimodalité en radiothérapie. Cancer/Radiothérapie 2001;5(1 Suppl 1):15-35.

Belkacémi Y, Tsoutsou PG, Comet B, Kerrou K, Lartigau E. Évaluation de la radiosensibilité tumorale par l'imagerie fonctionnelle et métabolique: de la recherche à l'application clinique. Revue de la littérature. Cancer/Radiothérapie 2006;10:124-33.

Delmaire C. Imagerie des métastases cérébrales. Cancer/ Radiothérapie 2015;19:16-9.

Bhavna Shah. composites from agricultural detritus for pollution remedy. Int J Pharm Pharm Sci 2016;3:4-49.

Yongchun G, Jijin G, Huabai T, Yuewen Y. Miniature Neutron Source Reactor General Description. China Institute of Atomic Energy. Peking; 1992.

Hillaire-Marcel G, Isotopes and food. the Terrestrial Environment, B, Elesvier, Amsterdam; 1986. p. 507-48.

Kelly SD, Food authenticity and traceability, A volume in Woodhead Publishing Series in Food Science, Technology and Nutrition; 2003. p. 156–83.

Szumowski P, Rogowski F, Abdelrazek S, Kociura-Sawicka A, Sokolik-Ostasz A. Iodine isotope ¹³¹I therapy for toxic nodular goitre: treatment efficacy parameters. Nucl Med Rev Cent East Eur 2012;15:713.

Stokkel MP, Handkiewicz Junak D, Lassmann M, Dietlein M, Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging 2010;37:2218–28.

Kaniuka S, Lass P, Sworczak K. Radioiodine an attractive alternative to surgery in large non-toxic multinodular goitres. Nucl Med Rev Cent East Eur 2009;12:239.

Fast S. Prestimulation with recombinant human thyrotropin (rhTSH) improves the long-term outcome of radioiodine therapy for multinodular nontoxic goiter. J Clin Endocrinol Metab 2012;97:2653–60.

Giusti M. Long-term outcome after radioiodine therapy with adjuvant rhTSH treatment: comparison between patients with nontoxic and pre-toxic large multinodular goitre. Endocrine 2014;45:221–9.

Verelst J, Bonnyns M, Glinoer D. Radioiodine therapy in voluminous non-toxic goitre. Acta Endocrinol 1990;122:417–21.

Huysmans DA, Buijs WC, van de Ven MT. Dosimetry and risk estimates of radioiodine therapy for large, multinodular goiters. J Nucl Med 1996;37:2072–9.

Sun XS. Radiation therapy in thyroid cancer. Cancer/ Radiothérapie 2013;17:233–43.

Schlumberger M, Chevillard S, Ory K, Dupuy C, Le Guen B, de Vathaire F. Cancer de la thyroïde après exposition aux rayonnements ionisants. Cancer/Radiothérapie 2011;15:394-9.

Raoul JL. Traitement des carcinomes hépatocellulaires par injection intra-artérielle de radio-isotopes. Cancer/ Radio-thérapie 2011;15:64-8.

Cecconi A, Blotta A, Ntreta M, Busutti L. La radiothérapie métabolique par iode 131 et la radiothérapie transcutanée dans une population avec long suivi. Cancer/Radiothérapie 2007;1:429.

Dutrillaux B. Les cancers radio-induits. Cancer/Radiothérapie 1998;2:541-8.

Mallet F. Faisabilité et toxicité d’une séance unique de curiethérapie de haut débit de dose suivie d’une irradiation externe dans le cancer localisé de la prostate: étude rétrospective de la polyclinique de courlancy. Cancer/Radiothérapie 2010;14:11-8.

Mohammed Azharuddin. Evaluation of anti-thyroid activity of ficus racemosa linn bark in male rats. Int J Pharm Pharm Sci 2015;7:118-22.

Abdul Aziz Ramadan, Hasna Mandil, Jenan Sabouni. Determination of atorvastatin calcium in pure and its pharmaceutical formulations using iodine in acetonitrile by uv-visible spectrophotometric method. Int J Pharm Pharm Sci 2015;7:427-33.

Gerbaulet AP. Quel avenir pour la curiethérapie? Cancer/Radiothérapie 1999;3(1, Suppl 1):11-27.

El Bakkari B. analysis of I-131 production in the Moroccan TRIGA research reactor. Ann Nucl Energy 2015;78:140-5.

Elom Achoribo AS. Feasibility study for production of I-131 radioisotope using MNSR research reactor. Appl Radiat Isot 2012;70:76–80.

Yu O Kochnov, Kolesov VV, Fomin RV, Jerdev GM. Assessment of the increasing in 131-I production due to improved tellurium target in the WWR-c reactor core. Nucl Eng Sci Technol 2015;1:213-7.

El-Absy MA, El-Garhy MA, El-Amir MA, Fasih TW, El-Shahat MF. Separation and purification of 131 I from neutron irradiated tellurium dioxide targets by wet-distillation method. Separation Purification Technol 2010;71:1-12.

International Atomic Energy Agency. Manual for reactor produced radioisotopes, IAEATECDOC-1340. IAEA: Vienna, Austria; 2003. p. 121-4.

Daniel Cestau. Production of Iodine-131 from Low Enriched Uranium Targets International Meeting on Reduced Enrichment for Research and Test Reactors, Cape Town, South Africa; 2006.

Tout RE, Chatt A. The effect of sample matrix on selection of optimum timing parameters in cyclic neutron activation analysis. Anal Chim Acta 1981;133:409–19.

Parijat Pandey, Mandeep Dahiya. A brief review on inorganic nanoparticles. Int J Pharm Pharm Sci 2014;6:34-41.

Shefali arora, Shilpi Agarwal, Shailey Singhal. Anticancer activities of thiosemicarbazides/thiosemicarbazones. Int J Pharm Pharm Sci 2014;6:34-41.

Lieser KH. Nuclear and radiochemistry: fundamentals and applications, second ed. Wiley-WCH, New York; 2001.

Mirzadeh S, Walsh P. Numerical evaluation of the production of radionuclides in a nuclear reactor (Part I). Appl Radiat Isot 1998;49:379-82.

Kassakov M. Analyse par activation neutronique de substances ayant des sections efficaces macroscopiques elevees pour l’absorption de neutrons thermiques. M. Sc. A. Ecole Polytechnique de Montreal, Montréal; 2006.

Revel G. Analyse par activation. Technique de l’ingénieur, traite analyse et caracterisation; 2009. p. 1-21.

Abdessamad Didi. Calculating concentrations of elements in sample and compare with standard certified results of the International Atomic Energy Agency (IAEA) Soil-7. Der Pham Chem 2016;8:250-5.

DIDI. New design of thermal neutron flux distribution of Am–Be neutron source irradiation in paraffin moderator using MCNP-6. Mor J Chem 2016;4:285-8.

Published

01-11-2016

How to Cite

Didi, A., A. Dadouch, and H. E. Bekkouri. “FEASIBILITY STUDY FOR PRODUCTION OF IODINE-131 USING DIOXIDE OF TELLURIUM-130”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 11, Nov. 2016, pp. 327-31, doi:10.22159/ijpps.2016v8i11.13595.

Issue

Section

Original Article(s)