BIOSYNTHESIS OF GOLD NANOPARTICLES BY BIOSORPTION USING NEOSARTORYA UDAGAWAE: CHARACTERIZATION AND INVITRO EVALUATION

Authors

  • V. Jhansi Lakshmi Department of Biotechnology, Anna University, Chennai 641047, Tamil Nadu, India
  • K. P. Kannan Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam 638401, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijpps.2016v8i11.13665

Keywords:

Gold nanoparticles (AuNPs), Neosartorya udagawae (NU), Biological synthesis, stability, Czapex Dox Agar (CDA), Phosphate Buffer Saline (PBS), Bovine Serum Albumin (BSA)

Abstract

Objective: The present study was aimed to investigate gold nanoparticles synthesized by fungal isolate Neosartorya udagawae and determination of their stability in biofluids to probe their aptness in drug delivery applications.

Methods: In this procedure, gold nanoparticles were prepared by biosynthesis using seven days old culture of Neosartorya udagawae and aqueous chloroauric acid. After the complete reaction, the fungal biomass was subjected to UV-Vis, XRD, FT-IR Spectrum analysis, TEM, Zeta potential, SEM and EDX analysis.

Results: Intra/extracellular synthesis of gold nanoparticles was confirmed by a sharp peak at 526 nm in UV spectroscopy. SEM, TEM analysis demonstrates the spherical shape of AuNPs with an average diameter of 50 nm and XRD confirm the crystalline gold nanoparticles. FTIR analysis reveals the presence of the protein shell around the gold nanoparticles. The zeta potential value of AuNPs was-36mV which confirmed the stability of nanoparticles dispersion. Gold nanoparticles have shown high stability in biofluids of Bovine Serum Albumin and Phosphate Buffer Saline at pH-5, pH-7and pH-9 which mimic the human colonic biological environment.

Conclusion: The fungal synthesis of AuNPs has been experimentally demonstrated and their stability in BSA, 10% NaCl and PBS at pH-7. This might be a promising option for drug delivery applications in carcinogenic colon disorders in human beings.

 

Downloads

Download data is not yet available.

References

Jahn W. Review: chemical aspects of the use of gold clusters in structural biology. J Struct Biol 1999;127:106-12.

Peto G, Molnar GL, Paszti Z, Geszti O, Beck A, Guczi L. Electronic structure of gold nanoparticles deposited on Dihydroxy silicon phthalocyanine tetra sulfonic acid and oligo-µ-oxo silicon phthalocyanine tetra sulfonic acid(siox/si). Mater Sci Eng C 2002;19:95–9.

Mona MA, Amira MM. Solid lipid nanoparticles and nanostructured lipid carriers of tolnaftate: design, optimization and in vitro evaluation. Int J Pharm Pharm Sci 2016;8:380-5.

Rashmi S, Preeti V, Sadhna P. Enzymatic formation of gold nanoparticles using Phanerochaete. Chrysosporium. Adv Chem Eng Sci 2011;1:154-62.

Meysam SN, Hosein SBG, Naimeh K. Biosynthesis of gold nanoparticles using Streptomyces Fulvissimus isolate. Nanomed J 2015;2:153-9.

Naveen BE, Prakash S. Biological synthesis of gold nanoparticles using marine algae Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian J Pharm Clin Res 2013;6:179-82.

Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar Sr, Khan Mi, et al. Bioreduction of Aucl(-) ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles. Angew Chem Int Ed Engl 2001;40:3585-8.

Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012;112:2739–79.

Zeinab S, Mojtaba S, Farzad K. Biological synthesis of gold nanoparticles by fungus Epicoccum nigrum. J Cluster Sci 2011;22:661-5.

Absar A, Satyajyoti S, Islam MK, Rajiv K, Ramani R, Srinivas V, et al. Intracellular synthesis of gold nanoparticles by a novel alkali tolerant actinomycete, Rhodococcus Species. Nanotechnology 2003;14:824–8.

Pranav Vasanthi B, Dilliganesh T, Vasanth KM, Chamundeeswari M, Baskar G. Biological synthesis and characterization of intracellular gold nanoparticles using biomass of Aspergillus fumigatus. Bull Mater Sci 2014;36:1201-5.

Balagurunathan R, Radhakrishnan M, Babu Rajendran R, Velmurugan D. Biosynthesis of gold nanoparticles by actinomycetes streptomyces viridogens strainhm10. Indian J Biochem Biophys 2011;48:331-5.

Jayshree N, Cynthia Pauline P, Kanchana A. Biogenic synthesis by Sphearanthus amaranthoids; towards the efficient production of the biocompatible gold nanoparticles’. Digest J Nanomater Biostructures 2012;7:123–33.

Xiangsheng Liu, Huang N, Wang H, Huan Li, Jin Q, Jian Ji. The effect of ligand composition on the in vivo fate of multidenta poly (ethylene glycol) modiï¬ed gold nanoparticles. Biomaterials 2013;34:8370-81.

Liangwei Du, Liang X, Jia-Xun F. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium Sp. J Nanopart Res 2011;13:921–30.

Moghaddam KM. An introduction to the microbial metal nanoparticle preparation method. J Young Invest 2010;19:1-7.

Sneha K, Yeoung-Sang Y. Recovery of microbially synthesized gold nanoparticles using sodium citrate and detergents. Chem Eng J 2013;214:253–61.

Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 2006;69:485–92.

Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 2010;156:1–13.

Lengke M, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G. Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Environ Sci Technol 2006b;40:6304–9.

Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R. Biorecovery of gold using cyanobacteria and eukaryotic alga with special reference to nanogold formation–a novel phenomenon. J Appl Phycol 2009;21:145–52.

Nayakm D, Nag M, Banerjee S, Pal R, Laskar S, Lahiri S. Preconcentration of 198 Au in a green alga, Rhizoclonium. J Radioanal Nucl Chem 2006;268:337–40.

Singaravelu G, Arockiamary JS, Ganesh Kumar V, Govindaraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B 2007;57:97–101.

Parial D, Patra HK, Dasgupta AK, Pal R. Screening of different algae for green synthesis of gold nanoparticle. Eur J Appl Physiol 2012b;47:22-9.

Dipannita P, Ruma P. Green synthesis of gold nanoparticles using cyanobacteria and their characterization. Indian J Appl Res 2014;4:69-72.

Sheikhlou Z, Salouti M, Farahmandkia Z, Mahmazi S, Einlou A. Intra-extra biosynthesis of gold nanoparticles by the fungus Rhizopus oryza’ University of Zajan. University Med Sci 2012;20:47-56.

Kalabegishvili T, Kirkesali Ei, Rcheulishvili An, Ginturi En, Murusidze Ig, Pataraya Dt, et al. Synthesis of gold nanoparticles by some strains of arthrobacter genera. J Mater Sci Eng 2012;2:164-73.

Vijayan V, Srinivasa Rao D, Jayachandra E, Anburaj J. Preparation and characterization of antidiabetic drug loaded solid lipid nanoparticles. J Innovative Trends Pharm Sci 2010;1:320-8.

Shivaji SW, Arvind MD, Zygmunt S. Biosynthesis, optimization, purification and characterization of gold nanoparticles. Afr J Microbiol Res 2014;8:138-46.

Shanmugam Rajeshkumar CM, Gnanadhas G, Kanniah P, Mahendran V, Chellapandian K, Gurusamy A. Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostruct Chem 2013;3:2-7.

Rohan SP, Anup H. Green synthesis of silver nanorods using an aqueous extract of kalanchoe pinnata fresh leaves and its synergistic effect with ciprofloxacin and antibiofilm activities. Int J Pharm Pharm Sci 2016;8:168-74.

Published

01-11-2016

How to Cite

Lakshmi, V. J., and K. P. Kannan. “BIOSYNTHESIS OF GOLD NANOPARTICLES BY BIOSORPTION USING NEOSARTORYA UDAGAWAE: CHARACTERIZATION AND INVITRO EVALUATION”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 11, Nov. 2016, pp. 108-13, doi:10.22159/ijpps.2016v8i11.13665.

Issue

Section

Original Article(s)