A REVIEW ON ANTI-HCV AGENTS TARGETING ACTIVE SITE AND ALLOSTERIC SITES OF NON-STRUCTURAL PROTEIN 5B [NS5B]

Authors

  • Prasanthi Polamreddy Centre for Nanoscience and Nanotechnology, Sathyabama University, Jeppiaar Nagar, Old Mahabalipuram Road, Chennai-600 119, India
  • Vinita Vishwakarma Centre for Nanoscience and Nanotechnology, Sathyabama University, Jeppiaar Nagar, Old Mahabalipuram Road, Chennai-600 119, India
  • Rambabu Gundla Department of Chemistry, GITAM School of Technology, HTP Campus, GITAM University, Hyderabad 502329, TS, India

DOI:

https://doi.org/10.22159/ijpps.2016v8i11.13965

Keywords:

Hepatitis C virus, NS5B, Inhibitors, Structure-Activity relationships, Genotypic variance, Allosteric site, Active site

Abstract

Hepatitis C, a chronic disease affecting the global population significantly is caused majorly by Hepatitis C virus [HCV]. Among the several druggable targets explored for Hepatitis C, the viral protein, non-structural protein 5B [NS5B] is the target of choice for researchers as it is the key enzyme in the HCV replication and its active site is conserved among all genotypes. In the recent years the landscape of Hepatitis C therapies, have evolved from Peg-Interferon [PEG-INF]/Ribavirin, to directly acting anti-virus along with PEG-INF and finally, INF free regimens with greater than 90% sustained virological response [SVR]. The launch of Sofosbuvir, a nucleotide inhibitor of NS5B marks the major paradigm in hepatitis C research. Sofosbuvir exhibits, pan-genotypic activity, low barrier to resistance, highly effective and safe. However, the high prices of these medications limit their universal access. This review will focus on progress towards the discovery and development of NS5B inhibitors targeting allosteric sites and active site, covering the chemical class and structure-activity relationships.

Downloads

Download data is not yet available.

References

Orlando R, Lirussi F. Hepatitis C virus infection: sexual or non-sexual transmission between spouses? A case reports and reviews of the literature. Infection 2007;35:465–8.

El-Serag HB. Hepatocellular carcinoma: recent trends in the United States. Gastroenterology 2004;127(5 Suppl 1):S27–34.

Lai ME, Mazzoleni AP, Argiolu F, De Virgilis S, Balestrieri A, Purcell RH, et al. Hepatitis C virus in multiple episodes of acute hepatitis in poly transfused thalassaemic children. Lancet [London, England] 1994;343:388–90.

Cohen J. The scientific challenge of hepatitis C. Science 1999;285:26–30.

Averhoff FM, Glass N, Holtzman D. Global burden of hepatitis C: considerations for healthcare providers in the United States. Clin Infect Dis 2012;55 Suppl 1:S10–5.

Kwong AD. The HCV revolution did not happen overnight. ACS Med Chem Lett 2014;5:214–20.

Jaroszewicz J, Flisiak R, Dusheiko G. A pill for HCV-myth or foreseeable future? Liver Int 2014;34:6–11.

Kao, Chinnaswamy. An update on small molecule inhibitors of the HCV NS5B polymerase: effects on RNA synthesis in vitro and in cultured cells, and potential resistance in viral quasispecies. Virus Adapt Treat 2010;2:73-89.

Kayali Z, Schmidt WN. Finally sofosbuvir: an oral anti-HCV drug with wide performance capability. Pharmacogenomics Pers Med 2014;7:387–97.

Drug Pipeline-Quick Reference Guides. Available from: http://hcvadvocate.org/treatment/drug-pipeline/#Quick. [Last accessed on 10 Jul 2016].

Powdrill MH, Bernatchez Ja, Götte M. Inhibitors of the hepatitis C virus RNA-dependent RNA polymerase NS5B. Viruses 2010;2:2169–95.

Lindenbach BD, Rice CM. Unraveling hepatitis C virus replication from genome to function. Nature 2005;436:933–8.

Ivashkina N, Wölk B, Lohmann V, Bartenschlager R, Blum HE, Penin F, et al. The hepatitis C virus RNA-dependent RNA polymerase membrane insertion sequence is a transmembrane segment. J Virol 2002;76:13088–93.

Schmidt-Mende J, Bieck E, Hugle T, Penin F, Rice CM, Blum HE, et al. Determinants for membrane association of the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem 2001;276:44052–63.

Le Pogam S, Seshaadri A, Kosaka A, Chiu S, Kang H, Hu S, et al. Existence of hepatitis C virus NS5B variants naturally resistant to non-nucleoside, but not to a nucleoside, polymerase inhibitors among untreated patients. J Antimicrob Chemother 2008;61:1205–16.

Jiao P, Xue W, Shen Y, Jin N, Liu H. Understanding the drug resistance mechanism of hepatitis C virus NS5B to PF-00868554 due to mutations of the 423 site: a computational study. Mol BioSyst 2014;10:767–77.

Ferraris P, Blanchard E, Roingeard P. Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes. J Gen Virol 2010;91[Pt 9]:2230–7.

Romero-Brey I, Merz A, Chiramel A, Lee JY, Chlanda P, Haselman U, et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog 2012;8:e1003056.

Beaulieu PL, Tsantrizos YS. Inhibitors of the HCV NS5B polymerase: new hope for the treatment of hepatitis C infections. Curr Opin Invest Drugs 2004;5:838–50.

Herlihy KJ, Graham JP, Kumpf R, Patick AK, Duggal R, Shi ST. Development of intergenotypic chimeric replicons to determine the broad-spectrum antiviral activities of hepatitis C virus polymerase inhibitors. Antimicrob Agents Chemother 2008;52:3523–31.

Poijärvi-Virta P. Prodrug approaches of nucleotides and oligonucleotides. Curr Med Chem 2006;13:3441–65.

Lavie A, Konrad M. Structural requirements for efficient phosphorylation of nucleotide analogs by human thymidylate kinase. Mini Rev Med Chem 2004;4:351–9.

Quinazoline derivatives as medicaments. WO2005032481A2; 2004.

Eldrup AB, Allerson CR, Bennett CF, Bera S, Bhat B, Bhat N, et al. Structure-activity relationship of purine ribonucleosides for inhibition of hepatitis C virus RNA-dependent RNA polymerase. J Med Chem 2004;47:2283–95.

Carroll SS, Tomassini JE, Bosserman M, Getty K, Stahlhut MW, Eldrup AB, et al. Inhibition of hepatitis C virus RNA replication by 2’-modified nucleoside analogs. J Biol Chem 2003;278:11979–84.

Deore RR, Chern JW. NS5B RNA-dependent RNA polymerase inhibitors: the promising approach to treating hepatitis C virus infections. Curr Med Chem 2010;17:3806–26.

Eldrup AB, Prhavc M, Brooks J, Bhat B, Prakash TP, Song Q, et al. Structure-activity relationship of hetero based-modified 2’-C-methyl ribonucleosides as inhibitors of hepatitis C virus RNA replication. J Med Chem 2004;47:5284–97.

McGuigan C, Madela K, Aljarah M, Gilles A, Brancale A, Zonta N, et al. Design, synthesis and evaluation of a novel double pro-drug: INX-08189. A new clinical candidate for hepatitis C virus. Bioorg Med Chem Lett 2010;20:4850–4.

Nucleosides with anti-hepatitis B Virus activity. US20020019363A1; 2009.

Weller S, Blum MR, Doucette M, Burnette T, Cederberg DM, de Miranda P, et al. Pharmacokinetics of the acyclovir prodrug valaciclovir after escalating single and multiple-dose administration to normal volunteers. Clin Pharmacol Ther 1993;54:595–605.

Pierra C, Amador A, Benzaria S, Cretton-Scott E, D’Amours M, Mao J, et al. Synthesis and pharmacokinetics of valopicitabine [NM283], an efficient prodrug of the potent anti-HCV agent 2’-C-methylcytidine. J Med Chem 2006;49:6614–20.

Valopicitabine [NM283] plus peg-interferon in treatment-naive hepatitis C patients with HCV genotype-1 infection: HCV RNA Clearance During 24 W of Treatment; 2007.

Clark JL, Hollecker L, Mason JC, Stuyver LJ, Tharnish PM, Lostia S, et al. Design, synthesis, and antiviral activity of 2’-deoxy-2'-fluoro-2'-C-methylcytidine, a potent inhibitor of hepatitis C virus replication. J Med Chem 2005;48:5504–8.

Perrone P, Luoni GM, Kelleher MR, Daverio F, Angell A, Mulready S, et al. Application of the phosphoramidite ProTide approach to 4’-azidouridine confers sub-micromolar potency versus hepatitis C virus on an inactive nucleoside. J Med Chem 2007;50:1840–9.

Klumpp K, Lévêque V, Le Pogam S, Ma H, Jiang WR, Kang H, et al. The novel nucleoside analog R1479 [4’-azidocytidine] is a potent inhibitor of NS5B-dependent RNA synthesis and hepatitis C virus replication in cell culture. J Biol Chem 2006;281:3793–9.

Stuyver LJ, Whitaker T, McBrayer TR, Hernandez-Santiago BI, Lostia S, Tharnish PM, et al. Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture. Antimicrob Agents Chemother 2003;47:244–54.

Stuyver LJ, McBrayer TR, Whitaker T, Tharnish PM, Ramesh M, Lostia S, et al. Inhibition of the subgenomic hepatitis C virus replicon in huh-7 cells by 2’-deoxy-2'-fluorocytidine. Antimicrob Agents Chemother 2004;48:651–4.

Wendt A, Adhoute X, Castellani P, Oules V, Ansaldi C, Benali S, et al. Chronic hepatitis C: future treatment. Clin Pharmacol 2014;6:1–17.

Sofia MJ, Bao D, Chang W, Du J, Nagarathnam D, Rachakonda S, et al. Discovery of a β-d-2’-deoxy-2'-α-fluoro-2'-β-C-methyluridine nucleotide prodrug [PSI-7977] for the treatment of hepatitis C virus. J Med Chem 2010;53:7202–18.

Sulkowski MS, Gardiner DF, Rodriguez-Torres M, Reddy KR, Hassanein T, Jacobson I, et al. Daclatasvir plus sofosbuvir for previously treated or untreated chronic HCV infection. N Engl J Med 2014;370:211–21.

Jonckers THM, Vandyck K, Vandekerckhove L, Hu L, Tahri A, Van Hoof S, et al. Nucleotide prodrugs of 2’-deoxy-2'-spirooxetane ribonucleosides as novel inhibitors of the HCV NS5B polymerase. J Med Chem 2014;57:1836–44.

Kao CC, Singh P, Ecker DJ. De novo initiation of viral RNA-dependent RNA synthesis. Virology 2001;287:251–60.

Witkowski JT, Robins RK, Khare GP, Sidwell RW. Synthesis and antiviral activity of 1,2,4-triazole-3-thiocarboxamide and 1,2,4-triazole-3-carboxamidine ribonucleosides. J Med Chem 1973;16:935–7.

Lin C, Yeh LT, Vitarella D, Hong Z. Viramidine, a prodrug of ribavirin, shows better liver-targeting properties and safety profiles than ribavirin in animals. Antiviral Chem Chemother 2003;14:145–52.

Marcellin P, Gish RG, Gitlin N, Heise J, Halliman DG, Chun E, et al. Safety and efficacy of viramidine versus ribavirin in ViSER2:randomized, double-blind study in therapy-naive hepatitis C patients. J Hepatol 2010;52:32–8.

Zhu R, Wang M, Xia Y, Qu F, Neyts J, Peng L. Arylethynyltriazole a cyclo nucleosides inhibit hepatitis C virus replication. Bioorg Med Chem Lett 2008;18:3321–7.

Koh YH, Shim JH, Girardet JL, Hong Z. Design and evaluation of a potential mutagen for hepatitis C virus. Bioorg Med Chem Lett 2007;17:5261–4.

Summa V, Petrocchi A, Pace P, Matassa VG, De Francesco R, Altamura S, et al. Discovery of alpha,gamma-diketo acids as potent selective and reversible inhibitors of hepatitis C virus NS5b RNA-dependent RNA polymerase. J Med Chem 2004;47:14–7.

Di Francesco ME, Avolio S, Pompei M, Pesci S, Monteagudo E, Pucci V, et al. Synthesis and antiviral properties of novel 7-heterocyclic substituted 7-deaza-adenine nucleoside inhibitors of hepatitis C NS5B polymerase. Bioorg Med Chem 2012;20:4801–11.

Manfroni G, Cannalire R, Barreca ML, Kaushik-Basu N, Leyssen P, Winquist J, et al. The versatile nature of the 6-aminoquinolone scaffold: identification of submicromolar hepatitis C virus NS5B inhibitors. J Med Chem 2014;57:1952–63.

Cho A, Zhang L, Xu J, Lee R, Butler T, Metobo S, et al. Discovery of the first C-nucleoside HCV polymerase inhibitor [GS-6620] with demonstrated antiviral response in HCV-infected patients. J Med Chem 2014;57:1812–25.

Murakami E, Wang T, Babusis D, Lepist EI, Sauer D, Park Y, et al. Metabolism and pharmacokinetics of the anti-hepatitis C virus nucleotide prodrug GS-6620. Antimicrob Agents Chemother 2014;58:1943–51.

Antiviral Activity and resistance emergence: combinations of the NS5B nucleotide inhibitor ACH-3422 with other antiviral agents in vitro. Available from: http://www.natap.org/2014/ AASLD/AASLD_44.htm. [Last accessed on 10 Jun 2016].

ACH-3422, a Novel Nucleotide Prodrug Inhibitor of HCV NS5B Polymerase. Available from: http://www.natap.org/ 2015/EASL/EASL_99.htm. [Last accessed on 10 Jun 2016].

Medivir-News-Press Releases. Available from: http://www.medivir.se/v5/en/uptodate/pressrelease.cfm?releaseid=1639EA2C5103B43Dandyear=2011. [Last accessed on 10 Jun 2016].

DDIs [drug-drug interactions] in the evolving HCV treatment landscape. Available from: http://www.natap.org/ 2014/Pharm/Pharm_46.htm. [Last accessed 25 Jan 2016].

Tomei L, Altamura S, Bartholomew L, Biroccio A, Ceccacci A, Pacini L, et al. Mechanism of action and antiviral activity of benzimidazole-based allosteric inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. J Virol 2003;77:13225–31.

McKercher G, Beaulieu PL, Lamarre D, LaPlante S, Lefebvre S, Pellerin C, et al. Specific inhibitors of HCV polymerase identified using an NS5B with lower affinity for template/primer substrate. Nucleic Acids Res 2004;32:422–31.

Di Marco S, Volpari C, Tomei L, Altamura S, Harper S, Narjes F, et al. Interdomain communication in hepatitis C virus polymerase abolished by small molecule inhibitors bound to a novel allosteric site. J Biol Chem 2005;280:29765–70.

Mayhoub AS. Hepatitis C RNA-dependent RNA polymerase inhibitors: a review of structure-activity and resistance relationships; different scaffolds and mutations. Bioorg Med Chem Elsevier 2012;20:3150–61.

Kukolj G, McGibbon GA, McKercher G, Marquis M, Lefèbvre S, Thauvette L, et al. Binding site characterization and resistance to a class of non-nucleoside inhibitors of the hepatitis C virus NS5B polymerase. J Biol Chem 2005;280:39260–7.

LaPlante SR, Cameron DR, Aubry N, Lefebvre S, Kukolj G, Maurice R, et al. Solution structure of substrate-based ligands when bound to hepatitis C virus NS3 protease domain. J Biol Chem 1999;274:18618–24.

Ishida T, Suzuki T, Hirashima S, Mizutani K, Yoshida A, Ando I, et al. Benzimidazole inhibitors of hepatitis C virus NS5B polymerase: identification of 2-[[4-diarylmethoxy]phenyl]-benzimidazole. Bioorg Med Chem Lett 2006;16:1859–63.

Beaulieu PL, Bös M, Bousquet Y, Fazal G, Gauthier J, Gillard J, et al. Non-nucleoside inhibitors of the hepatitis C virus NS5B polymerase: discovery and preliminary SAR of benzimidazole derivatives. Bioorg Med Chem Lett 2004;14:119–24.

Beaulieu PL, Bös M, Bousquet Y, DeRoy P, Fazal G, Gauthier J, et al. Non-nucleoside inhibitors of the hepatitis C virus NS5B polymerase: discovery of benzimidazole 5-carboxylic amide derivatives with low nanomolar potency. Bioorg Med Chem Lett 2004;14:967–71.

Hirashima S, Suzuki T, Ishida T, Noji S, Yata S, Ando I, et al. Benzimidazole derivatives bearing substituted biphenyls as hepatitis C virus NS5B RNA-dependent RNA polymerase inhibitors: structure-activity relationship studies and identification of a potent and highly selective inhibitor JTK-109. J Med Chem 2006;49:4721–36.

Patil VM, R GK, Chudayeu M, Gupta SP, Samanta S, Masand N, et al. Synthesis, in vitro and in silico NS5B polymerase inhibitory activity of benzimidazole derivatives. Med Chem 2012;8:629–35.

Weidlich IE, Filippov IV, Brown J, Kaushik-Basu N, Krishnan R, Nicklaus MC, et al. Inhibitors for the hepatitis C virus RNA polymerase explored by SAR with advanced machine learning methods. Bioorg Med Chem 2013;21:3127–37.

Beaulieu PL, Gillard J, Jolicoeur E, Duan J, Garneau M, Kukolj G, et al. From benzimidazole to indole-5-carboxamide thumb pocket I inhibitors of HCV NS5B polymerase. part 1: indole C-2 SAR and discovery of diamide derivatives with nanomolar potency in cell-based subgenomic replicons. Bioorg Med Chem Lett 2011;21:3658–63.

Harper S, Pacini B, Avolio S, Filippo M Di, Migliaccio G, Laufer R, et al. Development and Preliminary Optimization of Indole; 2005. p. 1314–7.

Stansfield I, Pompei M, Conte I, Ercolani C, Migliaccio G, Jairaj M, et al. Development of carboxylic acid replacements in indole-N-acetamide inhibitors of hepatitis C virus NS5B polymerase. Bioorg Med Chem Lett 2007;17:5143–9.

Ikegashira K, Oka T, Hirashima S, Noji S, Yamanaka H, Hara Y, et al. Discovery of conformationally constrained tetracyclic compounds as potent hepatitis C virus NS5B RNA polymerase inhibitors. J Med Chem 2006;49:6950–3.

Venkatraman S, Velazquez F, Gavalas S, Wu W, Chen KX, Nair AG, et al. Optimization of potency and pharmacokinetics of tricyclic indole derived inhibitors of HCV NS5B polymerase. Identification of ester prodrugs with improved oral pharmacokinetics. Bioorg Med Chem 2014;22:447–58.

Mcgowan D, Vendeville S, Lin T, Tahri A, Hu L, Cummings MD, et al. Bioorganic and medicinal chemistry letters finger-loop inhibitors of the HCV NS5b polymerase. part 1: discovery and optimization of novel 1, 6-and 2, 6-macrocyclic indole series. Bioorg Med Chem Lett 2012;22:4431–6.

Vendeville S, Lin TI, Hu L, Tahri A, McGowan D, Cummings MD, et al. Finger loop inhibitors of the HCV NS5b polymerase. Part II. Optimization of tetracyclic indole-based macrocycle leading to the discovery of TMC647055. Bioorg Med Chem Lett 2012;22:4437–43.

Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, et al. Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase. J Med Chem 2014;57:1880–92.

Velázquez F, Venkatraman S, Lesburg CA, Duca J, Rosenblum SB, Kozlowski JA, et al. Synthesis of new 4,5-dihydrofuranoindoles and their evaluation as HCV NS5B polymerase inhibitors. Org Lett 2012;14:556–9.

Gentles RG, Ding M, Bender JA, Bergstrom CP, Grant-Young K, Hewawasam P, et al. Discovery and preclinical characterization of the cyclopropyl indol benzazepine BMS-791325, a potent allosteric inhibitor of the hepatitis C virus NS5B polymerase. J Med Chem 2014;57:1855–79.

Rong F, Chow S, Yan S, Larson G, Hong Z, Wu J. Structure-activity relationship [SAR] studies of quinoxalines as novel HCV NS5B RNA-dependent RNA polymerase inhibitors. Bioorg Med Chem Lett 2007;17:1663–6.

Ontoria JM, Martìn Hernando JI, Malancona S, Attenni B, Stansfield I, Conte I, et al. Identification of thieno[3,2-b]pyrroles as allosteric inhibitors of hepatitis C virus NS5B polymerase. Bioorg Med Chem Lett 2006;16:4026–30.

Kaushik-Basu N, Bopda-Waffo A, Talele TT, Basu A, Costa PRR, da Silva AJM, et al. Identification and characterization of coumestans as novel HCV NS5B polymerase inhibitors. Nucleic Acids Res 2008;36:1482–96.

Lemm JA, Liu M, Gentles RG, Ding M, Voss S, Pelosi LA, et al. Preclinical characterization of BMS-791325, an allosteric inhibitor of hepatitis C Virus NS5B polymerase. Antimicrob Agents Chemother 2014;58:3485–95.

Rigat KL, Lu H, Wang YK, Argyrou A, Fanslau C, Beno B, et al. Mechanism of inhibition for BMS-791325, a novel non-nucleoside inhibitor of hepatitis C virus NS5B polymerase. J Biol Chem 2014;289:33456–68.

Muir AJ, Poordad F, Lalezari J, Everson G, Dore GJ, Herring R, et al. Daclatasvir in combination with asunaprevir and beclabuvir for hepatitis C virus genotype 1 infection with compensated cirrhosis. JAMA 2015;313:1736–44.

Program F, Book A. Global Antiviral Journal; 2009. p. 5.

Safety and Antiviral Activity of NS5B Polymerase Inhibitor MK-3281in Genotype 1 and 3 HCV-Infected Patients; 2009.

Zeuzem S, Dufour JF, Buti M, Soriano V, Buynak RJ, Mantry P, et al. Interferon-free treatment of chronic hepatitis C with faldaprevir, deleobuvir and ribavirin: SOUND-C3, a phase 2b study. Liver Int 2015;35:417–21.

Zeuzem S, Soriano V, Asselah T, Bronowicki JP, Lohse AW, Müllhaupt B, et al. Faldaprevir and deleobuvir for HCV genotype 1 infection. N Engl J Med 2013;369:630–9.

Devogelaere B, Berke JM, Vijgen L, Dehertogh P, Fransen E, Cleiren E, et al. TMC647055, a potent nonnucleoside hepatitis C virus NS5B polymerase inhibitor with cross-genotypic coverage. Antimicrob Agents Chemother 2012;56:4676–84.

Erhardt A, Deterding K, Benhamou Y, Reiser M, Forns X, Pol S, et al. Safety, pharmacokinetics and antiviral effect of BILB 1941, a novel hepatitis C virus RNA polymerase inhibitor, after 5 d oral treatment. Antivir Ther 2009;14:23–32.

Wang M, Ng KKS, Cherney MM, Chan L, Yannopoulos CG, Bedard J, et al. Non-nucleoside analogue inhibitors bind to an allosteric site on HCV NS5B polymerase. Crystal structures and mechanism of inhibition. J Biol Chem 2003;278:9489–95.

Yan S, Appleby T, Larson G, Wu JZ, Hamatake R, Hong Z, et al. Structure-based design of a novel thiazolone scaffold as HCV NS5B polymerase allosteric inhibitors. Bioorg Med Chem Lett 2006;16:5888–91.

Yan S, Larson G, Wu JZ, Appleby T, Ding Y, Hamatake R, et al. Novel thiazolones as HCV NS5B polymerase allosteric inhibitors: further designs, SAR, and complex X-ray structure. Bioorg Med Chem Lett 2007;17:63–7.

Al-Ansary GH, Ismail MAH, Abou El Ella DA, Eid S, Abouzid KAM. Molecular design and synthesis of HCV inhibitors based on thiazolone scaffold. Eur J Med Chem 2013;68:19–32.

Beaulieu PL, Coulombe R, Duan J, Fazal G, Godbout C, Hucke O, et al. Structure-based design of novel HCV NS5B thumb pocket 2 allosteric inhibitors with submicromolar gt1 replicon potency: discovery of a quinazolinone chemotype. Bioorg Med Chem Lett 2013;23:4132–40.

Love RA, Parge HE, Yu X, Hickey MJ, Diehl W, Gao J, et al. Crystallographic identification of a noncompetitive inhibitor binding site on the hepatitis C virus NS5B RNA polymerase enzyme. J Virol 2003;77:7575–81.

Chan L, Pereira O, Reddy TJ, Das SK, Poisson C, Courchesne M, et al. Discovery of thiophene-2-carboxylic acids as potent inhibitors of HCV NS5B polymerase and HCV subgenomic RNA replication. Part 2: tertiary amides. Bioorg Med Chem Lett 2004;14:797–800.

Chan L, Das SK, Reddy TJ, Poisson C, Proulx M, Pereira O, et al. Discovery of thiophene-2-carboxylic acids as potent inhibitors of HCV NS5B polymerase and HCV subgenomic RNA replication. Part 1: sulfonamides. Bioorg Med Chem Lett 2004;14:793–6.

Chan L, Reddy TJ, Proulx M, Das SK, Pereira O, Wang W, et al. Identification of N,N-disubstituted phenylalanines as a novel class of inhibitors of hepatitis C NS5B polymerase. J Med Chem 2003;46:1283–5.

Reddy TJ, Chan L, Turcotte N, Proulx M, Pereira OZ, Das SK, et al. Further SAR studies on novel small molecule inhibitors of the hepatitis C [HCV] NS5B polymerase. Bioorg Med Chem Lett 2003;13:3341–4.

Howe AYM, Cheng H, Thompson I, Chunduru SK, Herrmann S, O’Connell J, et al. Molecular mechanism of a thumb domain hepatitis C virus nonnucleoside RNA-dependent RNA polymerase inhibitor. Antimicrob Agents Chemother 2006;50:4103–13.

Gopalsamy A, Lim K, Ciszewski G, Park K, Ellingboe JW, Bloom J, et al. Discovery of pyrano[3,4-b]indoles as potent and selective HCV NS5B polymerase inhibitors. J Med Chem 2004;47:6603–8.

Jackson RW, LaPorte MG, Herbertz T, Draper TL, Gaboury JA, Rippin SR, et al. The discovery and structure-activity relationships of pyrano[3,4-b]indole-based inhibitors of hepatitis C virus NS5B polymerase. Bioorg Med Chem Lett 2011;21:3227–31.

LaPorte MG, Draper TL, Miller LE, Blackledge CW, Leister LK, Amparo E, et al. The discovery and structure-activity relationships of pyrano[3,4-b]indole based inhibitors of hepatitis C virus NS5B polymerase. Bioorg Med Chem Lett 2010;20:2968–73.

Li H, Tatlock J, Linton A, Gonzalez J, Borchardt A, Dragovich P, et al. Identification and structure-based optimization of novel dihydropyrone as potent HCV RNA polymerase inhibitors. Bioorg Med Chem Lett 2006;16:4834–8.

Andres CJ, Bronson JJ, D’Andrea SV, Deshpande MS, Falk PJ, Grant-Young KA, et al. 4-Thiazolidinones: novel inhibitors of the bacterial enzyme MurB. Bioorg Med Chem Lett 2000;10:715–7.

Küçükgüzel SG, Oruç EE, Rollas S, Sahin F, Ozbek A. Synthesis, characterization and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles, and some related compounds. Eur J Med Chem 2002;37:197–206.

Karali N, İllhan E, Gürsoy A, Kiraz M. New cyclohexylidenehydrazide and 4-aza-1-thiaspiro[4.5]decan-3-one derivatives of 3-phenyl-4[3H]-quinazolinones. Farm 1998;53:346–9.

Fahmy HT. Synthesis of some new triazoles as potential antifungal agents. Boll Chim Farm 2001;140:422–7.

Ergenç N, Capan G. Synthesis and anticonvulsant activity of new 4-thiazolidone and 4-thiazoline derivatives. Farm 1994;49:133–5.

Capan G, Ulusoy N, Ergenç N, Cevdet Ekinci A, Vidin A. Synthesis and anticonvulsant activity of new 3-[[2-furyl]carbonyl]amino-4-thiazolidinone and 2-[[2-furyl] carbonyl] hydrazono-4-thiazoline derivatives. Farm 1996;51:729–32.

Bukowski L, Janowiec M, Zwolska-Kwiek Z, Andrzejczyk Z. Some reactions of 2-cyanomethylimidazo[4,5-b]pyridine with isothiocyanates. The antituberculosis activity of the obtained compounds. Pharmazie 1998;53:373–6.

Babaoglu K, Page MA, Jones VC, McNeil MR, Dong C, Naismith JH, et al. Novel inhibitors of an emerging target in Mycobacterium tuberculosis; substituted thiazolidinones as inhibitors of dTDP-rhamnose synthesis. Bioorg Med Chem Lett 2003;13:3227–30.

Rawal RK, Katti SB, Kaushik-Basu N, Arora P, Pan Z. Non-nucleoside inhibitors of the hepatitis C virus NS5B RNA-dependant RNA polymerase: 2-Aryl-3-heteroaryl-1,3-thiazolidin-4-one derivatives. Bioorg Med Chem Lett 2008;18:6110–4.

Küçükgüzel I, Satılmış G, Gurukumar KR, Basu A, Tatar E, Nichols DB, et al. 2-Heteroarylimino-5-arylidene-4-thiazolidinones as a new class of non-nucleoside inhibitors of HCV NS5B polymerase. Eur J Med Chem 2013;69:931–41.

Nittoli T, Curran K, Insaf S, DiGrandi M, Orlowski M, Chopra R, et al. Identification of anthranilic acid derivatives as a novel class of allosteric inhibitors of hepatitis C NS5B polymerase. J Med Chem 2007;50:2108–16.

Stammers T a, Coulombe R, Duplessis M, Fazal G, Gagnon A, Garneau M, et al. Anthranilic acid-based thumb pocket 2 HCV NS5B polymerase inhibitors with sub-micromolar potency in the cell-based replicon assay. Bioorg Med Chem Lett 2013;23:6879–85.

May MM, Brohm D, Harrenga A, Marquardt T, Riedl B, Kreuter J, et al. Discovery of substituted N-phenylbenzene sulphonamides as a novel class of non-nucleoside hepatitis C virus polymerase inhibitors. Antiviral Res 2012;95:182–91.

Beaulieu PL. Filibuvir, a non-nucleoside NS5B polymerase inhibitor for the potential oral treatment of chronic HCV infection. I Drugs 2010;13:938–48.

Cooper C, Lawitz EJ, Ghali P, Rodriguez-Torres M, Anderson FH, Lee SS, et al. Evaluation of VCH-759 monotherapy in hepatitis C infection. J Hepatol 2009;51:39–46.

Jiang M, Zhang EZ, Ardzinski A, Tigges A, Davis A, Sullivan JC, et al. Genotypic and phenotypic analyses of hepatitis C virus variants observed in clinical studies of VX-222, a nonnucleoside NS5B polymerase inhibitor. Antimicrob Agents Chemother 2014;58:5456–65.

Sofosbuvir+ledipasvir or GS-9669 | CATIE-Canada’s source for HIV and hepatitis C information; 2013.

Nyanguile O, Pauwels F, Van den Broeck W, Boutton CW, Quirynen L, Ivens T, et al. 1,5-benzodiazepines, a novel class of hepatitis C virus polymerase nonnucleoside inhibitors. Antimicrob Agents Chemother 2008;52:4420–31.

Dhanak D, Duffy KJ, Johnston VK, Lin-Goerke J, Darcy M, Shaw AN, et al. Identification and biological characterization of heterocyclic inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem 2002;277:38322–7.

Tomei L, Altamura S, Bartholomew L, Bisbocci M, Bailey C, Bosserman M, et al. Characterization of the inhibition of hepatitis C virus RNA replication by nonnucleosides. J Virol 2004;78:938–46.

Pratt JK, Donner P, McDaniel KF, Maring CJ, Kati WM, Mo H, et al. Inhibitors of HCV NS5B polymerase: synthesis and structure-activity relationships of N-1-heteroalkyl-4-hydroxyquinolon-3-yl-benzothiadiazines. Bioorg Med Chem Lett 2005;15:1577–82.

Zhou Y, Webber SE, Murphy DE, Li L-S, Dragovich PS, Tran CV, et al. Novel HCV NS5B polymerase inhibitors derived from 4-[1’,1'-dioxo-1',4'-dihydro-1'lambda6-benzo[1',2',4']thiadiazin-3'-yl]-5-hydroxy-2H-pyridazin-3-ones. Part 1:exploration of 7'-substitution of benzothiadiazine. Bioorg Med Chem Lett 2008;18:1413–8.

Zhou Y, Li LS, Dragovich PS, Murphy DE, Tran CV, Ruebsam F, et al. Novel HCV NS5B polymerase inhibitors derived from 4-[1’,1'-dioxo-1',4'-dihydro-1'lambda[6]-benzo[1',2',4']thiadiazin-3'-yl]-5-hydroxy-2H-pyridazin-3-ones. Part 2: variation of the 2-and 6-pyridazinone substituents. Bioorg Med Chem Lett 2008;18:1419–24.

Li LS, Zhou Y, Murphy DE, Stankovic N, Zhao J, Dragovich PS, et al. Novel HCV NS5B polymerase inhibitors derived from 4-[1’,1'-dioxo-1',4'-dihydro-1'lambda[6]-benzo[1',2',4']thiadiazin-3'-yl]-5-hydroxy-2H-pyridazin-3-ones. Part 3:Further optimization of the 2-, 6-, and 7'-substituents and initial pharmacokinetic assessme. Bioorg Med Chem Lett 2008;18:3446–55.

Randolph JT, Flentge CA, Huang PP, Hutchinson DK, Klein LL, Lim HB, et al. Synthesis and biological characterization of Bring amino analogues of potent benzothiadiazide hepatitis C virus polymerase inhibitors. J Med Chem 2009;52:3174–83.

Powers JP, Piper DE, Li Y, Mayorga V, Anzola J, Chen JM, et al. SAR and mode of action of novel non-nucleoside inhibitors of hepatitis C NS5b RNA polymerase. J Med Chem 2006;49:1034–46.

Burton G, Ku TW, Carr TJ, Kiesow T, Sarisky RT, Lin-Goerke J, et al. Identification of small molecule inhibitors of the hepatitis C virus RNA-dependent RNA polymerase from a pyrrolidine combinatorial mixture. Bioorg Med Chem Lett 2005;15:1553–6.

Burton G, Ku TW, Carr TJ, Kiesow T, Sarisky RT, Lin-Goerke J, et al. Studies on acyl pyrrolidine inhibitors of HCV RNA-dependent RNA polymerase to identify a molecule with replicon antiviral activity. Bioorg Med Chem Lett 2007;17:1930–3.

Liu Y, Lim BH, Jiang WW, Flentge CA, Hutchinson DK, Madigan DL, et al. Identification of aryl dihydrouracil derivatives as palm initiation site inhibitors of HCV NS5B polymerase. Bioorg Med Chem Lett 2012;22:3747–50.

Gopalsamy A, Chopra R, Lim K, Ciszewski G, Shi M, Curran KJ, et al. Discovery of proline sulfonamides as potent and selective hepatitis C virus NS5b polymerase inhibitors. Evidence for a new NS5b polymerase binding site. J Med Chem 2006;49:3052–5.

Pfefferkorn Ja, Greene ML, Nugent Ra, Gross RJ, Mitchell Ma, Finzel BC, et al. Inhibitors of HCV NS5B polymerase. Part 1: evaluation of the southern region of [2Z]-2-[benzoylamino]-3-[5-phenyl-2-furyl]acrylic acid. Bioorg Med Chem Lett 2005;15:2481–6.

Schoenfeld RC, Bourdet DL, Brameld KA, Chin E, de Vicente J, Fung A, et al. Discovery of a novel series of potent non-nucleoside inhibitors of hepatitis C virus NS5B. J Med Chem 2013;56:8163–82.

Ferrari E, He Z, Palermo RE. Hepatitis C virus NS5B polymerase exhibits distinct nucleotide requirements for initiation and elongation. J Biol Chem 2008;283:33893–901.

Cheng CC, Shipps GW, Yang Z, Kawahata N, Lesburg CA, Duca JS, et al. Inhibitors of hepatitis C virus polymerase: synthesis and characterization of novel 2-oxy-6-fluoro-N-[[S]-1-hydroxy-3-phenylpropan-2-yl]-benzamides. Bioorg Med Chem Lett 2010;20:2119–24.

Anilkumar GN, Lesburg CA, Selyutin O, Rosenblum SB, Zeng Q, Jiang Y, et al. I. Novel HCV NS5B polymerase inhibitors: discovery of indole 2-carboxylic acids with C3-heterocycles. Bioorg Med Chem Lett 2011;21:5336–41.

Anilkumar GN, Selyutin O, Rosenblum SB, Zeng Q, Jiang Y, Chan TY, et al. II. Novel HCV NS5B polymerase inhibitors: discovery of indole C2 acyl sulfonamides. Bioorg Med Chem Lett 2012;22:713–7.

Cheng CC, Huang X, Shipps GW, Wang YS, Wyss DF, Soucy KA, et al. Pyridine carboxamides: potent palm site inhibitors of HCV NS5B polymerase. ACS Med Chem Lett 2010;1:466–71.

Xue W JPLHYX. Molecular modeling and residue interaction network studies on the mechanism of binding and resistance of the HCV NS5B polymerase mutants to VX-222 and ANA598. Antivir Res 2014;104:40–51.

Poordad F, Hezode C, Trinh R, Kowdley KV, Zeuzem S, Agarwal K, et al. ABT-450/r-ombitasvir and dasabuvir with ribavirin for hepatitis C with cirrhosis. N Engl J Med 2014;370:1973–82.

Lawitz E, Poordad F, Kowdley KV, Cohen DE, Podsadecki T, Siggelkow S, et al. A phase 2a trial of 12-week interferon-free therapy with two direct-acting antivirals [ABT-450/r, ABT-072] and ribavirin in IL28B C/C patients with chronic hepatitis C genotype 1. J Hepatol 2013;59:18–23.

Howe AYM, Cheng H, Johann S, Mullen S, Chunduru SK, Young DC, et al. Molecular mechanism of hepatitis C virus replicon variants with reduced susceptibility to a benzofuran inhibitor, HCV-796. Antimicrob Agents Chemother 2008;52:3327–38.

Maynard A, Crosby RM, Ellis B, Hamatake R, Hong Z, Johns BA, et al. Discovery of a potent boronic acid derived inhibitor of the HCV RNA-dependent RNA polymerase. J Med Chem 2014;57:1902–13.

Voitenleitner C, Crosby R, Walker J, Remlinger K, Vamathevan J, Wang A, et al. In vitro characterization of GSK2485852, a novel hepatitis C virus polymerase inhibitor. Antimicrob Agents Chemother 2013;57:5216–24.

Hebner CM, Han B, Brendza KM, Nash M, Sulfab M, Tian Y, et al. The HCV non-nucleoside inhibitor Tegobuvir utilizes a novel mechanism of action to inhibit NS5B polymerase function. PLoS One 2012;7:e39163.

Presidio Pharmaceuticals Announces a New Clinical Candidate, PPI-383, a Novel Pan-Genotypic Non-Nucleoside Polymerase Inhibitor for HCV | Reuters; 2012.

Simmonds P, Alberti A, Alter HJ, Bonino F, Bradley DW, Brechot C, et al. A proposed system for the nomenclature of hepatitis C viral genotypes. Hepatology 1994;19:1321–4.

Messina JP, Humphreys I, Flaxman A, Brown A, Cooke GS, Pybus OG, et al. Global distribution and prevalence of hepatitis C virus genotypes. Hepatology 2014;61:77–87.

Ludmerer SW, Graham DJ, Boots E, Murray EM, Simcoe A, Markel EJ, et al. Replication fitness and NS5B drug sensitivity of diverse hepatitis C virus isolates characterized by using a transient replication assay. Antimicrob Agents Chemother 2005;49:2059–69.

Published

01-11-2016

How to Cite

Polamreddy, P., V. Vishwakarma, and R. Gundla. “A REVIEW ON ANTI-HCV AGENTS TARGETING ACTIVE SITE AND ALLOSTERIC SITES OF NON-STRUCTURAL PROTEIN 5B [NS5B]”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 11, Nov. 2016, pp. 1-18, doi:10.22159/ijpps.2016v8i11.13965.

Issue

Section

Review Article(s)