• Farouk K. El-baz Plant Biochemistry Department, National Research Centre (NRC), 33 El Bohouth st. (former El Tahrir st.), Dokki, Giza, Egypt, P.O.12622
  • Hanan F. Aly Therapeutic Chemistry Department, National Research Centre (NRC), 33 El Bohouth st. (former El Tahrir st.), Dokki, Giza, Egypt, P.O.12622
  • Sayeda M. Abdo Water pollution Research Department, National Research Centre (NRC), 33 El Bohouth st. (former El Tahrir st.), Dokki, Giza, Egypt, P.O.12622
  • Safaa A. Saad Plant Biochemistry Department, National Research Centre (NRC), 33 El Bohouth st. (former El Tahrir st.), Dokki, Giza, Egypt, P.O.12622




Diabetes mellitus, Haematococcus pluvialis, STZ, Liver enzymes, Lipid profile


Objective: The present study aims to evaluate the antidiabetic effect of ethanolic extract of Haematococcus pluvialis (H. pluvialis) in streptozotocin (STZ)-induced diabetic rats.

Methods: The antidiabetic activity of H. pluvialis was investigated by the determination of glucose and insulin levels, aspartate (AST), alanine transaminases (ALT), lipid profile including total cholesterol (TC), triglycerides (TG), low-density lipoprotein-cholesterol (LDL-C) and high-density-lipoprotein-cholesterol (HDL-C). Histopathological examination of pancreas and liver were also carried out.

Results: The results revealed that the levels of glucose, TC, TG, LDL-C as well as AST and ALT enzyme activities were increased significantly in diabetic rats. While, insulin and HDL-C levels decreased significantly in STZ-induced diabetic rats. The remediation of diabetic rats with H. pluvialis attenuated the elevated levels of glucose, TC, TG, LDL-C as well as AST and ALT activities in diabetic rats. Besides, it improved insulin, HDL-C levels, pancreas and hepatic architectures.

Conclusion: H. pluvialis extract has a promising antidiabetic potency through attenuation of several metabolic disorders associated diabetes.


Download data is not yet available.


Lee S, Jeon Y. Anti-diabetic effects of brown algae-derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 2013;86:129-36.

Sharifuddin Y, Chin Y, Lim P, Phang S. Potential bioactive compounds from seaweed for diabetes management. Mar Drugs 2015;13:5447-91.

Bishop WM, Zubeck HM. Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food Sci 2012;2:147.

Guerin M, Huntley ME, Olaizola M. Haematococcus ASTA: applications for human health and nutrition. Trends Biotechnol 2003;21:210-6.

Kishimoto Y, Yoshida H, Kondo K. Potential anti-atherosclerotic properties of ASTA. Mar Drugs 2016;14:1-13.

Talero E, García-Mauriño S, Ãvila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V. Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Mar Drugs 2015;13:6152-209.

Perez-Lopez P, González-García S, Jeffryes C, Agathos SN, McHugh E, Walsh D, et al. Life-cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: from lab to pilot scale. J Clean Prod 2014;64:332-44.

D’Orazio N, Gammone MA, Gemello E, DeGirolamo M, Cusenza S, Riccioni G. Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. Mar Drugs 2012;10:812-33.

Stanier RY, Kunisawa MM, Cohn-Bazire G. Purification and properties of unicellular blue green algae (order chroococcales). Bacteriol Rev 1971;35:171-201.

Olaizola M. Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 2000;12:499-506.

Liang H, Ma A, Zhang P, Bi SL, Shi DY. Effect of ethanol extract of alga Laurencia supplementation on DNA oxidation and alkylation damage in mice. Asia Pac J Clin Nutr 2007;16:164-8.

Milani E, Nikfar S, Khorasani R, Zamani MJ, Abdollahi M. Reduction of diabetes-induced oxidative stress by phosphodiestrase inhibitors in rats. Comp Biochem Physiol Part C: Toxicol Pharmacol 2005;140:251-5.

Rajesh V, Perumal P, Sundarrajan T. Antidiabetic activity of methanolic extract of Smilax zeylanica Linn in streptozotocin-induced diabetic rats. Internet J Endocrinol 2009;6:1-5.

Shalaby NMM, Abd-Alla HI, Aly HF, Albalawy MA, Shaker KH, Bouajila J. Preliminary in-vitro and in vivo evaluation of antidiabetic activity of Ducrosiaanethifolia Boiss. and its linear furanocoumarins. Biomed Res Int 2014;1-13.

Dachicourt N, Bailb D, Gangnerou MN, Serradas P, Ravel D, Portha B. Effect of gliclazide treatment on insulin secretion and beta-cell mass in non-insulin dependent goto-kakisaki rats. Eur J Pharmacol 1998;361:243-51.

El-Baz FK, Khalil WKB, Booles HF, Aly HF, Ali GH. Dunaliellasalina suppresses oxidative stress, alterations in the expression of pro-apoptosis and inflammation-related genes induced by STZ in diabetic rats. Int J Pharm Sci Rev Res 2016;38:219-26.

Trinder P. Determination of blood glucose using 4-aminophenazone. J Clin Pathol 1959;22:246-51.

Sacks BD. Carbohydrates. In: Burtis CA, Ashwood AR. Eds. tietz Textbook of clinical Chemistry. 2nd ed. Philadelphia WB. Saunders Co; 1994.

Reitman S, Frankel S. Glutamic-pyruvate transaminase assay by colorimetric method. Am J Clin Pathol 1957;28:56-8.

Allain CC, Poon LS, Chan CS, Richmound W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem 1974; 20:470-5.

Fassati P, Prencipe L. The determination of triglycerides using enzymatic methods. Clin Chem 1982;28:2077-80.

Assmann G, Gotto AM, Cagen JR. HDL cholesterol and protective factors in atherosclerosis. Circulation 2004;109:III8–III14.

Stein EA. In: Textbook of Clinical Chemistry. Saunders WB, NW Tietz. ed. Philadelphia; 1986. p. 879-86.

Drury RAB, Wallington EA. Preparation and fixation of tissues. In: Drury RAB, Wallington EA. editors. Carleton's Histological Technique. 5th ed. Oxford: Oxford University Press; 1980. p. 41-54.

Barde SR, Sakhare RS, Kanthale SB, Chandak PG, Jamkhande PG. Marine bioactive agents: a short review on new marine antidiabetic compounds. Asian Pac J Trop Dis 2015;5:S209-S13.

Nizamutdinova IT, Jin YC, Chung JI, Shin SC, Lee SJ, Seo HG, et al. The anti-diabetic effect of anthocyanins in streptozotocin-induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis. Mol Nutr Food Res 2009;53:1419-29.

El-Baz FK, Aly HF, Abd-Alla HI, Saad SA. Bioactive flavonoid glycosides and antidiabetic activity of Jatropha curcas on streptozotocin-induced diabetic rats. Int J Pharm Sci Rev Res 2014;29:143-56.

Sangeetha Ms, Priyanga S, Hemmalakshmi S, DevakiK. In vivo antidiabetic potential of Cycleapeltata in streptozotocin-induced diabetic rats. Asian J Pharm Clin Res 2015; 1:103-8.

Manabe E, Handa O, Naito Y, Mizushima K, Akagiri S, Adachi S, et al. Astaxanthin protects mesangial cells from hyperglycemia-induced oxidative signalling. J Cell Biochem 2008;103:1925-37.

Gandhi GR, Sasikumar P. Antidiabetic effect of Merremiaemarginata Burm. F. in streptozotocin is induced diabetic rats. Asian Pac J Trop Biomed 2012;2:281-6.

Abunasef SK, Amin HA, Abdel-Hamid GA. A histological and immune-histochemical study of beta cells in streptozotocin diabetic rats treated with caffeine. Folia Histochem Cytobiol 2014;52:42-50.

Cantley J, Ashcroft FM, Ashcroft U. Q and A: insulin secretion and type 2 diabetes: why do β-cells fail? BMC Biol 2015;13:1-7.

Preuss HG, Echard B, Yamashita E, Perricone NV. High dose astaxanthin lowers blood pressure and increases insulin sensitivity in rats: are these effects interdependent? Int J Med Sci 2011;8:126-38.

Regnier P, Bastias J, Rodriguez-Ruiz V, Caballero-Casero N, Caballo C, Sicilia D, et al. Astaxanthin from Haematococcus pluvialis prevents oxidative stress on human endothelial cells without toxicity. Mar Drugs 2015;13:2857-74.

Sireesha K, Sailaja RP. Oxidative stress and diabetes: an overview. Asian J Pharm Clin Res 2015;8:15-9.

Hamden K, Carreau S, Boujbiha MA, Lajmi S, Aloulou D, Kchaou D, et al. Hyperglycaemia, stress oxidant, liver dysfunction and histological changes in diabetic male rat pancreas and liver: protective effect of 17 beta-estradiol. Steroids 2008;73:495-501.

Ceron MC, Garcia-Malea MC, Rivas J, Acien FG, Fernandez JM, Río ED, et al. Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content. Appl Microbiol Biotechnol 2007;74:1112-9.

Tarchalski J, Guzik P, Wysocki H. Correlation between the extent of coronary atherosclerosis and lipid profile. Mol Cell Biochem 2003;246:25-30.

Shankarprasad DS, Gundalli S, Mahantesh B, Kashinakunti SV, Sunitha P. Lipid profile in diabetes mellitus. Indian J Pathol Oncol 2015;2:290-4.

Chahil TJ, Ginsberg HN. Diabetic dyslipidemia. Endocrinol Metab Clin North Am 2006;35:491-510.

Shepherd J. Does statin monotherapy address the multiple lipid abnormalities in type 2 diabetes? Atheroscler Suppl 2005;6:15-9.

Vergès B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia 2015;58:886-99.

Hussein G, Nakamura M, Zhao Q, Iguchi T, Goto H, Sankawa U, et al. Antihypertensive and neuroprotective effects of astaxanthin in experimental animals. Biol Pharm Bull 2005;28:47-52.

Banach M, Serban C, Aronow WS, Rysz J, Dragan S, Lerma EV, et al. Lipid, blood pressure and kidney update 2013. Int Urol Nephrol 2014;46:947-61.

McNulty HP, Byun J, Lockwood SF, Jacob RF, Mason RP. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochim Biophys Acta 2007;1768:167-74.

Jia Y, Kim JY, Jun HJ, Kim SJ, Lee JH, Hoang MH, et al. The natural carotenoid astaxanthin, a PPAR-alpha agonist and PPAR-gamma antagonist, reduces hepatic lipid accumulation by rewiring the transcriptome in lipid-loaded hepatocytes. Mol Nutrition Food Res 2012;56:878-88.

Liu PH, Aoi W, Takami M, Terajima H, Tanimura Y, Natio Y, et al. The astaxanthin-induced improvement in lipid metabolism during exercise is mediated by a PGC-1alpha increase in skeletal muscle. J Clin Biochem Nutrition 2014;54:86-9.

Yang Y, Kim B, Lee JY. Astaxanthin structure, metabolism, and health benefits. J Hum Nutr Food Sci 2013;1:1003.

Sheweita SA, Mashaly S, Newairy AA, Abdou HM, Eweda SM. Changes in oxidative stress and antioxidant enzyme activities in streptozotocin-induced diabetes mellitus in rats: role of Alhagi maurorum extracts. Oxid Med Cell Longev 2016;1-8. http://dx.doi.org/10.1155/ 2016/5264064

Hussein G, Nakagawa T, Goto H, Shimada Y, Matsumoto K, Sankawa U, et al. Astaxanthin ameliorates features of metabolic syndrome in SHR/NDmcr-cp. Life Sci 2007;80:522-9.

Rupeshkumar M, Kavitha K, Haldar PK. Role of herbal plants in the diabetes mellitus therapy: an overview. Int J Appl Pharm 2014;6:1-3.

Tripathi DN, Jena GB. Astaxanthin intervention ameliorates cyclophosphamide-induced oxidative stress, DNA damage and early hepatocarcinogenesis in rat: role of Nrf2, p53, p38 and phase-II enzymes. Mut Res 2010;696:69-80.

Showalter LA, Weinman SA, Qsterlie M, Lockwood SF. Plasma appearance and tissue accumulation of non-esterified, free astaxanthin in C57BL/6 mice after oral dosing of a disodium disuccinate diester of astaxanthin (Heptax). Comp Biochem Physiol Part C: Toxicol Pharmacol 2004;137:227-36.

Palozza P, Krinsky NI. Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch Biochem Biophys 1992;297:291-5.

Goto S, Kogure K, Abe K, Kimata Y, Kitahama K, Yamashita E, et al. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for the highly potent antiperoxidative activity of the carotenoid astaxanthin. Biochim Biophys Acta 2001;1512:251-8.



How to Cite

El-baz, F. K., H. F. Aly, S. M. Abdo, and S. A. Saad. “HEALING POTENCY OF HAEMATOCOCCUS PLUVIALIS EXTRACT FOR TREATING TYPE 2 DIABETES IN RATS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 9, no. 1, Jan. 2017, pp. 192-8, doi:10.22159/ijpps.2017v9i1.15629.



Original Article(s)

Most read articles by the same author(s)