THE ROLE OF CARBON NANOTUBES IN NANOBIOMEDICINES
DOI:
https://doi.org/10.22159/ijpps.2017v9i6.18522Keywords:
Carbon Nanotube, Single-walled carbon nanotubes, Multiwalled carbon nanotubes, CancerAbstract
CNTs is a fullerene molecule, described in 1991 by the Japanese Scientist ‘‘Sumio Iijima'' as tube-shaped of graphitic carbon, can be obtained either single or multi-walled nanotube, having a diameter measuring on the nanometer scale, and generally known as buckytubes. Carbon nanotubes (CNTs) have established much recent interest as new entities for experimental disease diagnosis and treatment because of their unique electronic, mechanical, thermal, spectroscopic, metallic, semiconducting and superconducting electron transport properties. Carbon nanotubes can be acquired in numerous ways, the general techniques are Arc discharge, Laser ablation, and Chemical vapour deposition (CVD). Carbon nanotubes are discussed in this review in terms of characters, history, structures, properties, synthesis, purification, characterization methods, toxicity and applications. Purification of nanotubes includes many techniques: Acid treatment, oxidation, annealing, ultrasonication, cutting, magnetic purification, chromatography techniques. Further functionalization enhanced the water solubility of CNT's and completely transformed their biocompatibility profile. Carbon nanotubes, due to their large surface areas, unique surface properties, and needle-like shape, can deliver a lot of therapeutic agents, including DNA, siRNAs and proteins to the target disease sites. CNTs can be readily excreted through the renal route by means of degradation through myeloperoxidase (MOP) enzyme. As CNTs have attracted the fancy of many scientists worldwide, the work beyond our expectations and their simple mechanism with long lasting life makes it more reliable to use. The unique and unusual properties of these structures make them a unique material with a whole range of promising applications.
Downloads
References
Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001;53:283-318.
Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Delivery Rev 2008;60:1638-49.
Pradeep T. Nano: the essentials: Understanding Nanoscience and Nanotechnology; 2007.
Iijima S. Helical microtubules of graphitic carbon. Nature; 1991. p. 56-8.
Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green ML. Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem Eur J 2003;9:3732-9.
Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. C60: buckminsterfullerene. Nature 1985;318:162-3.
Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR. C60:a new form of carbon. Nature 1990;347:354-8.
Galindo-RodrÃguez SA, Puel F, Briançon S, Allémann E, Doelker E, Fessi H. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci 2005;25:357-67.
Bethune D, Klang C, De Vries M, Gorman G, Savoy R, Vazquez J, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Lett Nat 1993;365:605-7.
Andersen AJ, Wibroe PP, Moghimi SM. Perspectives on carbon nanotube-mediated adverse immune effects. Adv Drug Delivery Rev 2012;64:1700-5.
Sundaramoorthy R, Vuyyuru M, Dhanaraju MD. Carbon nanotube: a flexible approach for nanomedicine and drug delivery. Asian J Pharm Clin Res 2015;8:7.
Martin CR, Kohli P. The emerging field of nanotube biotechnology. Nat Rev Drug Discovery 2003;2:29-37.
Moloni K, Lal A, Lagally MG. Sharpened carbon nanotube probes. International Symposium on Optical Science and Technology: International Society for Optics and Photonics; 2000. p. 76-83.
Singh GB, Baburao C, Pispati V, Pathipati H, Muthy N, Prassana S, et al. Carbon nanotubes–a novel drug delivery system; 2012.
Aqel A, El-Nour KM, Ammar RA, Al-Warthan A. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian J Chem 2012;5:1-23.
Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes--the route toward applications. Science 2002;297:787-92.
Qu L, Dai L. Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes. J Am Chem Soc 2005;127:10806-7.
Britto P, Santhanam K, Ajayan P. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 1996;41:121-5.
Meyyappan M. Carbon nanotubes: science and applications: CRC Press; 2005.
Kong J, Chapline MG, Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Materials 2001;13:1384-6.
Mehra NK, Palakurthi S. Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discovery Today 2016;21:585-97.
Sajid MI, Jamshaid U, Jamshaid T, Zafar N, Fessi H, Elaissari A. Carbon nanotubes from synthesis to in vivo biomedical applications. Int J Pharm 2016;501:278-99.
Miao M. Yarn spun from carbon nanotube forests: production, structure, properties and applications. Particuology 2013;11:378-93.
Hamers B, ST PJ, Veld M. The Wondrous World of Carbon Nanotubes; 2003.
Zhang R, Zhang Y, Wei F. Chapter 4-synthesis and properties of ultralong carbon nanotubes. In: Mark JS, Vesselin NS, Zhangzhang YinA2-Mark J Schulz VNS, Zhangzhang Y. editors. Nanotube Superfiber Materials. Boston: William Andrew Publishing; 2014. p. 87-136.
Rinzler A, Liu J, Dai H, Nikolaev P, Huffman C, Rodriguez-Macias F, et al. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A: Mater Sci Process 1998;67:29-37.
Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, et al. Crystalline ropes of metallic carbon nanotubes. Sci AAAS-Weekly Paper Edition 1996;273:483-7.
Singh P, Tripathi R, Saxena A. Synthesis of carbon nanotubes and their biomedical application. J Optoelectronics Biomed Mater 2010;2:91-8.
Dai H. Carbon nanotubes: opportunities and challenges. Surface Sci 2002;500:218-41.
Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004;306:1362-4.
Kong J, Soh HT, Cassell AM, Quate CF, Dai H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 1998;395:878-81.
Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Delivery Rev 2006;58:1460-70.
Ebbesen T, Ajayan P. Large-scale synthesis of carbon nanotubes. Nature 1992;358:220-2.
Jung SH, Kim MR, Jeong SH, Kim SU, Lee OJ, Lee KH, et al. High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen. Appl Phys A: Solids Surf 2003;76:285-6.
Daenen M, De Fouw R, Hamers B, Janssen P, Schouteden K, Veld M. The Wondrous World of Carbon Nanotubes. A Review of Current Carbon Nanotube Technologies. Eindhoven university of technology; 2003. p. 89.
Mehra NK, Palakurthi S. Interactions between carbon nanotubes and bio actives: a drug delivery perspective. Drug Discovery Today 2016;21:585-97.
Zhao B, Hu H, Niyogi S, Itkis ME, Hamon MA, Bhowmik P, et al. Chromatographic purification and properties of soluble single-walled carbon nanotubes. J Am Chem Soc 2001;123:11673-7.
Mehra NKJ AK, Lodhi N Raj RD V, Mishra D, Nahar M, Jain NK. Challenges in the use of carbon nanotubes for biomedical applications. Ther Drug Carrier Syst 2008;25:169–207.
Hou PX, Liu C, Cheng HM. Purification of carbon nanotubes. Carbon 2008;46:2003-25.
Tsang S, Harris P, Green M. Thinning and the opening of carbon nanotubes by oxidation using carbon dioxide. Nature London 1993;362:520.
Hiura H, Ebbesen TW, Tanigaki K. Opening and purification of carbon nanotubes in high yields. Adv Mater 1995;7:275-6.
Ikazaki F, Ohshima S, Uchida K, Kuriki Y, Hayakawa H, Yumura M, et al. Chemical purification of carbon nanotubes by use of graphite intercalation compounds. Carbon 1994;32:1539-41.
Ju-Nam Y, Lead JR. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environment 2008;400:396-414.
Sinha N, Yeow JW. Carbon nanotubes for biomedical applications. Nano-Bioscience, IEEE Transactions 2005;4:180-95.
Goto H, Furuta T, Tokune T, Fujiwara Y, Ohashi T. Method of manufacturing carbon nanotube. US Patent 20,020,090,468; 2002.
Chiang I, Brinson B, Smalley R, Margrave J, Hauge R. Purification and Characterization of single-wall carbon nanotubes. J Physical Chem B 2001;105:1157-61.
Harutyunyan AR, Pradhan BK, Chang J, Chen G, Eklund PC. Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles. J Phys Chem B 2002;106:8671-5.
Farkas E, Elizabeth Anderson M, Chen Z, Rinzler AG. Length sortingcutsingle wall carbon nanotubes by high performance liquid chromatography. Chem Phys Lett 2002;363:111-6.
Hou P, Liu C, Tong Y, Xu S, Liu M, Cheng H. Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method. J Mater Res Pittsburgh 2001;16:2526-9.
Kajiura H, Tsutsui S, Huang H, Murakami Y. High-quality single-walled carbon nanotubes from arc-produced soot. Chem Phys Lett 2002;364:586-92.
Moon JM, An KH, Lee YH, Park YS, Bae DJ, Park GS. The high-yield purification process of singlewalled carbon nanotubes. J Physical Chem B 2001;105:5677-81.
Huang H, Shiraishi M, Yamada A, Kajiura H, Ata M. Ultrasonic reflux system for one-step purification of carbon nanostructures. Google Patents; 2001.
Borowiak-Palen E, Pichler T, Liu X, Knupfer M, Graff A, Jost O, et al. Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation. Chem Phys Lett 2002;363:567-72.
Bandow S, Rao A, Williams K, Thess A, Smalley R, Eklund P. Purification of single-wall carbon nanotubes by microfiltration. J Physical Chem B 1997;101:8839-42.
Georgakilas V, Voulgaris D, Vazquez E, Prato M, Guldi DM, Kukovecz A, et al. Purification of HiPCO carbon nanotubes via organic functionalization. J Am Chem Soc 2002;124:14318-9.
Nepal D, Kim DS, Geckeler KE. A facile and rapid purification method for single-walled carbon nanotubes. Carbon 2005;43:660-2.
Shelimov KB, Esenaliev RO, Rinzler AG, Huffman CB, Smalley RE. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem Physics Lett 1998;282:429-34.
Gao B, Bower C, Lorentzen J, Fleming L, Kleinhammes A, Tang X, et al. Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem Phys Lett 2000;327:69-75.
Thiên-Nga L, Hernadi K, Ljubovic E, Garaj S, Forró L. Mechanical purification of single-walled carbon nanotube bundles from catalytic particles. Nano Lett 2002;2:1349-52.
Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian J Chem 2012;5:1-23.
Niyogi S, Hu H, Hamon M, Bhowmik P, Zhao B, Rozenzhak S, et al. Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTS). J Am Chem Soc 2001;123:733.
Peretz S, Regev O. Carbon nanotubes as nanocarriers in medicine. Curr Opin Colloid Interface Sci 2012;17:360-8.
Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, et al. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 2006;161:135-42.
Wang Y, Iqbal Z, Malhotra SV. Functionalization of carbon nanotubes with amines and enzymes. Chem Phys Lett 2005;402:96-101.
Shim M, Shi Kam NW, Chen RJ, Li Y, Dai H. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2002;2:285-8.
Qin Y, Liu L, Shi J, Wu W, Zhang J, Guo ZX, et al. Large-scale preparation of solubilized carbon nanotubes. Chem Mater 2003;15:3256-60.
Kirikova M, Ivanov A, Savilov S, Lunin V. Modification of multiwalled carbon nanotubes by carboxy groups and determination of the degree of functionalization. Russ Chem Bull 2008;57:298-303.
Campidelli S, Klumpp C, Bianco A, Guldi DM, Prato M. Functionalization of CNT: synthesis and applications in photovoltaics and biology. J Phys Org Chem 2006;19:531-9.
Hirsch A, Vostrowsky O. Functionalization of carbon nanotubes. Functional molecular nanostructures: Springer; 2005. p. 193-237.
Rey DA, Batt CA, Miller JC. Carbon nanotubes in biomedical applications. Nanotechnol Law Business 2006;3:263.
Hirsch A. Functionalization of singleâ€walled carbon nanotubes. Angew Chem Int Ed 2002;41:1853-9.
Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, et al. Fullerene pipes. Science 1998;280:1253-6.
Banerjee S, Wong SS. Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis. J Physical Chem B 2002;106:12144-51.
Itkis M, Niyogi S, Meng M, Hamon M, Hu H, Haddon R. Spectroscopic study of the fermi level electronic structure of single-walled carbon nanotubes. Nano Lett 2002;2:155-9.
Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem 2002;41:1853-9.
Kahn MG, Banerjee S, Wong SS. Solubilization of oxidized single-walled carbon nanotubes in organic and aqueous solvents through organic derivatization. Nano Lett 2002;2:1215-8.
Kesharwani P, Ghanghoria R, Jain NK. Carbon nanotube exploration in cancer cell lines. Drug Discovery Today 2012;17:1023-30.
Bottini M, Rosato N, Bottini N. PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead. Biomacromolecules 2011;12:3381-93.
Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2009;2:85-120.
Lin Y, Taylor S, Li H, Fernando KS, Qu L, Wang W, et al. Advances toward bioapplications of carbon nanotubes. J Mater Chem 2004;14:527-41.
Seminoff LA, Gleeson JM, Zheng J, Olsen GB, Holmberg D, Mohammad SF, et al. A self-regulating insulin delivery system. II. In vivo characteristics of a synthetic glycosylated insulin. Int J Pharm 1989;54:251-7.
Li GD, Tang ZK, Wang N, Chen JS. Structural study of the 0.4-nm single-walled carbon nanotubes aligned in channels of AlPO4-5 crystal. Carbon 2002;40:917-21.
Liu B, Jiang H, Johnson HT, Huang Y. The influence of mechanical deformation on the electrical properties of single wall carbon nanotubes. J Mechanics Physics Solids 2004;52:1-26.
Atike Ä°. Growth and characterization of carbon nanotubes over Co-Mo/MgO catalysts; 2010.
Andrews R, Jacques D, Qian D, Dickey EC. Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 2001;39:1681-7.
Liao X, Serquis A, Jia Q, Peterson D, Zhu Y, Xu H. Effect of catalyst composition on carbon nanotube growth. Appl Phys Lett 2003;82:2694-6.
Cowley J, Nikolaev P, Thess A, Smalley RE. Electron nano-diffraction study of carbon single-walled nanotube ropes. Chem Phys Lett 1997;265:379-84.
Terrones M, Terrones H, Grobert N, Hsu W, Zhu Y, Hare J, et al. Efficient route to large arrays ofCNxnanofibers by pyrolysis of ferrocene/melamine mixtures. Appl Phys Lett 1999;75:3932-4.
Hafner J, Cheung CL, Woolley A, Lieber C. Structural and functional imaging with carbon nanotube AFM probes. Prog Biophys Mol Biol 2001;77:73-110.
Kong J, Zhou C, Morpurgo A, Soh H, Quate C, Marcus C, et al. Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes. Appl Phys A 1999;69:305-8.
Dresselhaus M, Dresselhaus G. For a review, see. Adv Phys 1981;30:139.
Brar V, Samsonidze GG, Dresselhaus M, Dresselhaus G, Saito R, Swan A, et al. Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes. Phys Rev B 2002;66:1-11.
Arepalli S, Nikolaev P, Gorelik O, Hadjiev VG, Holmes W, Files B, et al. Protocol for the characterization of single-wall carbon nanotube material quality. Carbon 2004;42:1783-91.
Guggenheim S, Van Groos AK. Baseline studies of the clay minerals society source clays: thermal analysis. Clays Clay Minerals 2001;49:433-43.
Jain AK, Dubey V, Mehra NK, Lodhi N, Nahar M, Mishra DK, et al. Carbohydrate-conjugated multiwalled carbon nanotubes: development and characterization. Nanomedicine 2009;5:432-42.
Wang J, Kawde AN, Jan MR. Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization. Biosens Bioelectron 2004;20:995-1000.
Vashist SK, Zheng D, Pastorin G, Al-Rubeaan K, Luong JHT, Sheu FS. Delivery of drugs and biomolecules using carbon nanotubes. Carbon 2011;49:4077-97.
Mu Q, Liu W, Xing Y, Zhou H, Li Z, Zhang Y, et al. Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter. J Phys Chem C 2008;112:3300-7.
Ezzati Nazhad Dolatabadi J, Omidi Y, Losic D. Carbon nanotubes as an advanced drug and gene delivery nanosystem. Curr Nanosci 2011;7:297-314.
Raffa V, Ciofani G, Vittorio O, Riggio C, Cuschieri A. Physicochemical properties affecting cellular uptake of carbon nanotubes. Nanomedicine 2010;5:89-97.
Bianco A, Kostarelos K, Partidos CD, Prato M. Biomedical applications of functionalised carbon nanotubes. Chem Commun 2005;7:571-7.
Kam NWS, Liu Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem 2006;118:591-5.
Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M. Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2007;2:713-7.
Sheikhpour M, Golbabaie A, Kasaeian A. Carbon nanotubes: a review of novel strategies for cancer diagnosis and treatment. Mater Sci Eng Proc Conf 2017;76:1289-304.
Raffa V, Ciofani G, Nitodas S, Karachalios T, D’Alessandro D, Masini M, et al. Can the properties of carbon nanotubes influence their internalization by living cells? Carbon 2008;46:1600-10.
Shvedova AA, Kapralov AA, Feng WH, Kisin ER, Murray AR, Mercer RR, et al. Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice. PloS One 2012;7:e30923.
Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol 2012;261:121-133.
Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nano 2010;5:354-9.
Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, et al. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-κB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 2008;116:1211.
Jacobsen NR, Pojana G, White P, Møller P, Cohn CA, Smith Korsholm K, et al. Genotoxicity, cytotoxicity, and reactive oxygen species induced by singleâ€walled carbon nanotubes and C60 fullerenes in the FE1â€Mutaâ„¢ Mouse lung epithelial cells. Environ Mol Mutagen 2008;49:476-87.
Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev 1999;99:3181.
Kostarelos K. Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. Adv Colloid Interface Sci 2003;106:147-68.
Jain AK, Kumar Mehra N, Lodhi N, Dubey V, Mishra DK, Jain PK, et al. Carbon nanotubes and their toxicity. Nanotoxicology 2007;1:167-97.
Huczko A, Lange H. Carbon nanotubes: experimental evidence for a null risk of skin irritation and allergy. Fullerene Sci Technol 2001;9:247-50.
Huczko A, Lange H, Bystrzejewski M, Baranowski P, Grubekâ€Jaworska H, Nejman P, et al. Pulmonary toxicity of 1â€D nanocarbon materials. Fullerenes Nanotubes Carbon Nanostruct 2005;13:141-5.
Warheit DB, Laurence B, Reed KL, Roach D, Reynolds G, Webb T. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 2004;77:117-25.
Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem 2004;116:5354-8.
Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 2005;207:221-31.
Mehra NK, Jain AK, Lodhi N, Raj R, Dubey V, Mishra D, et al. Challenges in the use of carbon nanotubes for biomedical applications. Crit Rev Ther Drug Carrier Syst 2008;25:169.
Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, et al. Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett 2005;5:1107-10.
Sitharaman B, Shi X, Tran LA, Spicer PP, Rusakova I, Wilson LJ, et al. Injectable in situ cross-linkable nanocomposites of biodegradable polymers and carbon nanostructures for bone tissue engineering. J Biomater Sci Polym Ed 2007;18:655-71.
Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 2008;3:434-9.
Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 1999; 16:1564-9.
VanHandel M, Alizadeh D, Zhang L, Kateb B, Bronikowski M, Manohara H, et al. Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model. J Neuroimmunol 2009;208:3-9.
Kateb B, Van Handel M, Zhang L, Bronikowski MJ, Manohara H, Badie B. Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors. Neuroimage 2007;37:S9-S17.
Zhang Y, Bai Y, Yan B. Functionalized carbon nanotubes for potential medicinal applications. Drug Discovery Today 2010;15:428-35.
Irineu JAF, Marsi TC, Santos TG, Maria A, Santo E, Rangel JL, et al. Characterization and bioactivity study of nano-hydroxyapatite on superhydrophilic vertically aligned carbon nanotubes using optical techniques. Proc of SPIE; 2012. p. 82321K-1.
Singh R, Mehra NK, Jain V, Jain NK. Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cells. J Drug Targeting 2013;21:581-9.
Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 2003;302:1545-8.
Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 2009;3:307-16.
Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z, et al. Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 2004;4:1019-24.
Kam NWS, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 2005;127:6021-6.
Liu Z, Winters M, Holodniy M, Dai H. siRNA delivery into human t cells and primary cells with carbonâ€nanotube transporters. Angew Chem Int Ed 2007;46:2023-7.
Sobhani Z, Dinarvand R, Atyabi F, Ghahremani M, Adeli M. Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. Int J Nanomed 2011;6:705.
Chen M, Song X, Lv Q, Gan Z, Liu S. Bonding of carbon nanotubes onto microelectrodes by localized induction heating. Sens Actuators A 2011;170:202-6.
Huang H, Yuan Q, Shah JS, Misra RD. A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv Drug Delivery Rev 2011;63:1332-9.
Pruthi J, Mehra NK, Jain NK. Macrophages targeting of amphotericin B through mannosylated multiwalled carbon nanotubes. J Drug Target 2012;20:593-604.
Ji Z, Lin G, Lu Q, Meng L, Shen X, Dong L, et al. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J Colloid Interface Sci 2012;365:143-9.
Elhissi A, Ahmed W, Dhanak VR, Subramani K. Carbon Nanotubes in Cancer Therapy and Drug Delivery 2012:347-63. http://dx.doi.org/10.1155/2012/837327
Lodhi N, Mehra NK, Jain NK. Development and characterization of dexamethasone mesylate anchored on multi walled carbon nanotubes. J Drug Target 2013;21:67-76.
Aliev AE, Oh J, Kozlov ME, Kuznetsov AA, Fang S, Fonseca AF, et al. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 2009;323:1575-8.