HERBAL MEDICINES AS NEUROPROTECTIVE AGENT: A MECHANISTIC APPROACH
DOI:
https://doi.org/10.22159/ijpps.2017v9i11.19444Keywords:
Nil, Antioxidant, Dementia, Herbal medicine, Neurodegenerative diseases, Neuroprotective plantAbstract
Neurodegeneration refers to a condition of neuronal death occurring as a result of progressive disease of long termand is becoming a major health problem in the 21st century. Neurons degenerated are not replaced resulting in cognitive loss ,many neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's Disease (AD) dementia, cerebrovascular impairment, seizure disorders, head injury, Parkinsonism. Neuroprotection refers to the strategies and possible mechanisms that are able to protect the central nervous system (CNS) against neuronal injury and neurodegenerative disorders. The past decade has witnessed an intense interest in herbal plants having long-term health promoting or medicinal qualities. Comprehensive research and discovery has demonstrated that natural products, medicinal herbs, plant extracts, and their metabolites, have great potential as neuroprotective agent. Although the precise mechanisms of action of herbal drugs have yet to be determined, some of them have been shown to exert anti-inflammatory and/or antioxidant effects. Thus the herbal plants can be a valuable source of drug against neurodegenerative disorders which will require high-throughput screening. This review will highlight the role of herbal plants and their phytoconstituents against neurodegenerative diseases and other related disorders, focusing on their mechanism of action and therapeutic potential.
Â
Keywords:
Downloads
References
Carrell RW, Lomas DA. Conformational disease. Lancet 1997; 350:134–138.
Kolominsky Rabas PL, Sarti C, Heuschmann PU, Graf C, Siemonsen S, Neundoerfer B, et al. A prospective community based study of stroke in Germany-The Erlangen Stroke Project (ESPro): Incidence and case fatality at 1, 3, and 12 months. Stroke 1998; 29:2501–6.
Commenges D, Scotet V, Renaud S, Jacqmin GH, Barberger Gateau P, Dartigues JF. Intake of flavonoids and risk of dementia. Eur J Epidemiol 2000;6:357–63.
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256:184-185.
Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10: 698-712.
Taylor JP, Hardy J, Fischbeck KH. Toxic pro¬teins in neurodegenerative disease. Science 2002; 296: 1991-1995.
Krainc D. Clearance of mutant proteins as a therapeutic target in neurodegenerative dis¬eases. Arch Neurol 2010; 67: 388-392.
Rademakers R, Neumann M, Mackenzie IR. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol 2012; 8: 423-434.
Nijholt DA, DeKimpe L, Elfrink HL, Hoozemans JJ, Scheper W. Removing protein aggregates: The role of proteolysis in neurodegeneration. Curr Med Chem 2011; 18:2459–2476.
Lewerenz J, Maher P. Chronic glutamate toxicity in neurodegenerative diseases—What is the Evidence? Front Neurosci 2015;9: 469.
Singh N, Pandey BR, Verma P. An overview of phytotherapeutic approach in prevention and treatment of alzheimer’s syndrome & dementia. International Journal of Pharmaceutical Sciences and Drug Research 2011; 3(3): 162-172
Selvam AB. Inventory of vegetable crude drug samples housed in Botanical Survey of India, Howrah. Pharmacognosy Rev 2008;2:61–94.
Kumar V. Potential medicinal plants for CNS disorders: An overview. Phytother Res 2006; 20:1023–35.
Agarwal KC. Therapeutic actions of garlic constituents. Medicinal Research Reviews 1996;16(1):111–124.
Lawson LD. Garlic: a review of its medicinal effects and indicated active compounds. Phytomedicines of Europe 1998;691:176-209
Augusti KT, Mathew PT. Effect of allicin on certain enzymes of liver after a short term feeding to normal rats. Experentia 1975; 31:148–149
Fenwick GR, Hanley AB. The genus Allium part 2. Crit Rev FoodSci Nutr 1985; 22:273–377
Coyle JT, Puttfarcken P. Oxidative stress, glutamate and neurodegenerative disorders. Science 1993; 262:689–695
Harunobu A. Clarifying the real bioactive constituents of garlic. Journal of Nutrition 2006; 136:716S–725S
Oi YM, Imafuku C, Shishido Y, Kominato S, Nishimura K. Allyl-containing sulfides in garlic increase uncoupling protein content in brown adipose tissue, and noradrenaline and adrenaline secretion in rats. J Nutr 1999; 129:336–42.
Barrett SC, Strother JL. Taxonomy and natural history of Bacopa in California. Syst Bot 1978;3(4):408–419.
Chowdhuri DK, Parmar D, Kakkar P, Shukla R, Seth PK, Srimal RC. Antistress effects of bacosides of Bacopa monnieri: modulation of Hsp70 expression, superoxide dismutase and cytochrome P450 activity in rat brain. Phytotherapy Research 2002; 16(7):639–645.
Mahato SB, Garai S, and Chakravarty AK. Bacopasaponins E and F: two jujubogenin bisdesmosides from Bacopa monniera. Phytochemistry 2000; 53(6):711–714.
Jyoti A, Sharma D. Neuroprotective role of Bacopa monniera extract against aluminium-induced oxidative stress in the hippocampus of rat brain. NeuroToxicology 2006;27(4):451–457.
Saraf MK, Prabhakar S, Anand A. Neuroprotective effect of Bacopa monniera on ischemia induced brain injury. Pharmacology Biochemistry and Behavior 2010;97(2):192-197
Anand T,Naika, Swamy MSL, Khanum F. Antioxidant and DNA damage preventive properties of Bacopa monniera (L) Wettst. Free Radicals and Antioxidants 2011;1(1):84–90.
Nalini K, Aroor A, Karanth K, Rao A. Centella asiatica fresh leaf aqueous extract on learning and memory and biogenic amine turnover in albino rats. Fitoterapia. 1992;63:232–7.
Singh B, Rastogi RP. A reinvestigation of the triterpenes of Centella asiatica. Phytochem. 1969;8:917–21.
Lee MK, Kim SR, Sung SH, Lim D, Kim H, Choi H, Park HK, Je S, Ki YC. Asiatic acid derivatives protect cultured cortical neurons from glutamate-induced excitotoxicity. Res. Commun. Mol. Pathol.Pharmocol. 2000; 108(1-2): 75-86.
Soumyanath A, Zhong YP, Gold SA, Yu X, Koop DR, Bourdette D, Gold G. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in vitro. J. Pharm. Pharmcol. 2005; 57(9): 1221-1229.
Kumar A, Seghal N, Padi SV, Naidu PS. Differential effects of cyclooxygenase inhibitors on intracerebroventricular colchicine-induced dysfunction and oxidative stress in rats. European Journal of Pharmacology 2006; 551(1–3):58–66.
Jin SG, Chuen LC, and M. W. L. Koo. Inhibitory effects of Centella asiatica water extract and asiaticoside on inducible nitric oxide synthase during gastric ulcer healing in rats. Planta Medica 2004; 70(12):1150–1154.
Aggarwal BB, Surh YJ, Shishodia S. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Springer 2007; 100:616–617.
Garcia AM, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J. Neurochem 2007; 102:1095–1104.
Kim DS, Park SY, Kim JK. Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from betaA(1-42) insult. Neurosci Lett 2001; 303: 57–61.
Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent antiamyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J. Neurosci. Res 2004; 75: 742–750.
Dickinson DA, Iles KE, Zhang H, Blank V, Forman HJ. Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. FASEB J 2003;17(3): 473-5.
Liu Z, Yu Y, Li X, Ross Ch A, Smith WW. Curcumin protects against A53T alpha-synuclein induced toxicity in a PC12 inducible cell model for Parkinsonism. Pharmacological Research 2011;63(5): 439-44
Basu NK, Pabrai PR. Chemical investigation of Celastrus paniculata Willd. J Am Pharm Assoc 2006;35(9):272-3.
Yasu LU, Yang S, Zou Z, Chen H, Zhen X, Zhongemei Z, et al. Evoninoate sesquiterpene alkaloids from the stem of Celastrus paniculatus. Heterocycl 2006;68(2):1241-7.
Tu YQ, Chen YZ, Wu DG, Zhang XM, Hao JX. Sesquiterpene polyol esters from Celastrus paniculatus. J Nat Prod 1991;54(2):1383-6.
Kumar MHV, Gupta YK. Antioxidant property of Celastrus paniculatus willd: a possible mechanism enhancing cognition. Phytomedicine 2002;9(4):302-11
Geng Y, Li C, Liu J, Xing G, Zhou L, Dong M, et al. Beta-asarone improves cognitive function by suppressing neuronal apoptosis in the beta-amyloid hippocampus injection rat. Biol Pharm Bull 2010;33:836-43.
Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Progress in Neurobiology 2001; 65(2):135-72.
Paterna JC, Leng A, Weber E, Feldon J, Bueler H. DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice. Mol Ther 2007;15(4):698-704.
Deepa B & Anuradha CV. Antioxidant potential of Coriandrum sativum L. seed extract. Indian J Exp.Biol 2011;49:30.
Vekaria RH, Patel MN, Bhalodiya PN, Patel V, Desai TR, Tirgar PR. Evaluation of neuroprotective effect of Coriandrum sativum linn. against ischemic-reperfusion insult in brain. Int J Phytopharmacol 2012; 3(2):186-93.
Vasudevan Mani, Milind Parle. Memory-enhancing activity of Coriandrum sativum in rats. Pharmacologyonline 2009;2:827-39.
Pearson VE. Galantamine: A new Alzheimer drug with a past life. Ann Pharmacother. 2001;35:1406–13.
Bores GM, Huger FP, Petko W, Mutlib AE, Camacho F, Rush DK, et al., Pharmacological evaluation of novel Alzheimer's disease therapeutics: Acetylcholinesterase inhibitors related to galanthamine. J Pharmacol Exp Ther 1996;277:728-38.
Zhou ZY, Zheng SL. The missing link of Ginkgo evolution. Nature 2003, 423, 821–822.
Birks J, Grimley EJ. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst. Rev. 2009;18(2): CD003120.
DeKosky ST, Williamson JD, Fitzpatrick AL, Kronmal RA, Lves DG, Saxton JA et al. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA 2008; 300(19):2253-62.
Chandrasekaran K, Mehrabian Z, Spinnewyn B, Chinopoulos C, Drieu K, Fiskum G. Neuroprotective effects of bilobalide, a component of Ginkgo biloba extract (EGb 761) in global brain ischemia and in excitotoxicity-induced neuronal death. Pharmacopsychiatry 2003;36: S89–S94.
Das A, Shanker G, Nath C, Pal R, Singh S, Singh H. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba: anticholinesterase and cognitive enhancing activities. Pharmacol Biochem Behav 2002; 73(4): 893-900.
Dhingra D, Parle M, Kulkarni SK. Memory enhancing activity of Glycyrrhiza glabra in mice, Journal of Ethnopharmacology 2004; 91(2-3): 361-365.
Teltumbde AK, Wahurwagh AK, Lonare MK, Nesari TM. Effect of Yashtimadhu (Glycyrrhiza Glabra) on intelligence and memory function in male adolescents. Scholars J Appl Med Sci 2013;1(2):90-5.
Yu XQ, Xue CC, Zhou ZW, Li CG, Du YM, Liang J, et al. In vitro and in vivo neuroprotective effect and mechanisms of glabridin, a major active isoflavan from Glycyrrhiza glabra (licorice). Life Sci 2008;82:68-78.
Muralidharan P, Balamurugan G, Babu V. Cerebroprotective effect of Glycyrrhiza glabra Linn. root extract on hypoxic rats. Bangladesh J Pharmacol 2009;4:60-4.
Barnes J,Anderson LA, Phillipson JD. StJohn’swort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties. J. Pharm.Pharmacol 2001; 53: 583–600.
Benedi J, Arroyo R, Romero C, Martin-Aragon S, Villar AM. Antioxidant properties and protective effects of a standardized extract of Hypericumperforatum on hydrogenperoxide-induced oxidative damage in PC12 cells. LifeSci.2004; 75: 1263–1276.
Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA et al. Glutamate induced neuronal death: a success ion of necrosis or apoptosis depending on mitochondrial function. Neuron 1995; 15: 961–973.
Butterfield DA, Reed T, Newman SF, Sultana R. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic. Biol. Med 2007; 43: 658–677.
Altun ML, Yilmaz BS, Orhan IE, Citoglu GS. Assessment of cholinesterase and tyrosinase inhibitory and antioxidant effects of Hypericum perforatum L. (St.John’swort). Ind. Crops Prod 2013; 43:87–92.
Alia M, Mateos R, Ramos S, Lecumberri E, Bravo L, Goya L. Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatomacellline (HepG2). Eur. J. Nutr 2006; 45:19–28.
Takayama H, Katakawa K, Kitajima M, Yamaguchi K, Aimi N. Seven new lycopodium alkaloids, lycoposerramines-C,-D,-E,-P,-Q,-S, and-U, from Lycopodium serratum Thunb. Tetrahedron Lett 2002; 43(46): 8307-8311
Liu JS, Zhu YL, Yu CM, Zhou YZ, Han YY, Wu FW, et al. The structures of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Can J Chem 1986; 64(4): 837-839.
Wang H, Tang XC. Anticholinesterase effects of huperzine A, E2020, and tacrine in rats. Zhongguo Yao Li Xue Bao 1998; 19(1):27-30.
Zangara A. The psychopharmacology of huperzine A: an alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of Alzheimer’s disease. Pharmacol Biochem Behav 2003; 75(3): 675-686.
Zhang HY, Zheng CY, Yan H, Wang ZF, Tang LL, Gao X, et al. Potential therapeutic targets of huperzine A for Alzheimer’s disease and vascular dementia. Chem Biol Interact 2008; 175(1-3):396-402.
Kennedy DO, Scholey AB, Tildesley NT, Perry EK, Wesnes KA Kennedy. Modulation of mood and cognitive performance following acute administration of Melissa officinalis (lemon balm). Pharmacol Biochem Behav 2002; 72: 953-964.
Timonen M, Liukkonen T. Management of depression in adults. BMJ 2007; 336(7641):435–439.
Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer's disease: A double blind, randomised, placebo controlled trial. JNeurol Neurosurg Psychiatry 2003; 74:863-866.
Jyoti S, Satendra S, Sushma S, Anjana T, Shashi S. Antistressor activity of Ocimum sanctum (Tulsi) against experimentally induced oxidative stress in rabbits. Methods Find Exp Clin Pharmacol 2007; 29:411-6.
Mahmood Samim, Sree Hari Yajamanam, Naziya Bano, Veeresh B, Madhav Reddy B. Neuroprotective effect of Ocimum sanctum Linn on rotenone induced Parkinsonism in rats. Int J Pharm Res Scholars 2014;3(1):772-84.
Venuprasad MP, Kumar KH, Khanum F. Neuroprotective effects of hydroalcoholic extract of Ocimum sanctum against H2O2 induced neuronal cell damage in SH-SY5Y cells via its antioxidative defence mechanism. Neurochem Res 2013; 38: 2190–200.
Yun TK. Brief introduction of Panax ginseng C.A. Meyer. J. Korean Med. Sci. 2001; 16: S3–S5.
Radad K, Gille G, Liu L, Rausch WD. Use of ginseng in medicine with emphasis on neurodegenerative disorders. J. Pharmacol. Sci. 2006; 100: 175–186.
Chen XC, Zhu YG, Zhu LA, Huang C, Chen Y, Chen LM, Fang F, Zhou YC and Zhao CH. Ginsenoside Rg1 attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress. Eur J Pharmacol 2003; 473: 1-7.
Park SE, Kim S, Sapkota K, Kim SJ. Neuroprotective effect of Rosmarinus officinalis extract on human dopaminergic cell line, SH-SY5Y. Cell Mol Neurobiol. 2010; 30(5):759-67.
Rasoul A, Maryam HGK, Mohammad TG, Taghi L, Rada asle dehghan. Antioxidant Activity of Oral Administration of Rosmarinus Officinalis Leaves Extract on Rat's Hippocampus which Exposed to 6-Hydroxydopamine. Braz. arch. biol. technol. 2016; 59: e16150354
Cheung S, Tai J. Anti-proliferative and antioxidant properties of rosemary Rosmarinus officinalis. Oncol. Rep. 2007; 17:1525–1531.
Tapsell LC, Hemphill I, Cobiac L, Patch CS, Sullivan DR, Fenech M, et.al. Health benefits of herbs and spices: The past, the present, the future. Med. J. Aust. 2006; 185:S4–S24.
Imanshahidi M, Hosseinzadeh H. The pharmacological effects of Salvia species on the central nervous system. Phytother. Res. 2006; 20: 427–437.
Perry NSL, Houghton PJ, Theobald A, Jenner P, Perry EK. In-vitro inhibition of erythrocyte acetylcholinesterase by Salvia lavandulaefolia essential oil and constituent terpenes. J. Pharm. Pharmacol. 2000; 53:1347–1356.
Eidi M, Eidi A, Bahar M. Effects of Salvia officinalis L.(sage) leaves on memory retention and its interaction with the cholinergic system in rats. Nutrition 2006; 22(3): 321-326.
Tildesley NT, Kennedy DO, Perry EK, Ballard CG, Wesnes KA, Scholey AB. Positive modulation of mood and cognitive performance following administration of acute doses of Salvia lavandulaefolia essential oil to healthy young volunteers. Physiol Behav 2005; 83(5): 699-709.
Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placeboâ€controlled trial. J Clin Pharm Ther 2003; 28(1): 53-59.
Koetter U, Barrett M, Lacher S, Abdelrahman A, Dolnick D. Interactions of Magnolia and Ziziphus extracts with selected central nervous system receptors. J Ethnopharmacol 2009; 124(3): 421-425.
Chang SC, Hsu BY, Chen BH. Structural characterization of polysaccharides from Zizyphus jujuba and evaluation ofantioxidant activity. Int J Biol Macromol 2010; 47(4): 445-453.
Heo HJ, Park YJ, Suh YM, Choi SJ, Kim MJ, Cho HY, et al. Effects of oleamide on choline acetyltransferase and cognitive activities. Biosci Biotechnol Biochem 2003; 67(6): 1284-1291.
Oda Y. Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathol Int 1999; 49(11): 921-937.
Surya Prakash DV, Sree Satya N, Sumanjali Avanigadda, Meena Vangalapati. Pharmacological Review on Terminalia Chebula. Int J Res Pharm Biomed Sci 2012;3(2):679-83.
Chandrashekar R, Manohar VR, Rao SN. Acute anxiolytic effect of aqueous extract of fruits of Terminalia chebula (AETC) in mice. Int J Pharm Bio Sci 2012;3(4):673-7.
Cheng HY, Lin TC, Yu KH, Yang CM, Lin CC. Antioxidant and free radical scavenging activities of Terminalia chebula. Biol Pharm Bull 2003;26:1331-5.
Nageswara Rao S, Palaksha MN, Satish S, Ravishankar. The effects of ethanolic extract in dried Ffruits of Terminalia chebula on learning and memory in mice. Asian J Biomed Pharm Sci 2013;3(20):59-62.
Gaire BP, Pandit NJ, Lee D,Song J, Kim JY, Park J, et al. Terminalia chebula extract protects OGD-R induced PC12 cell death and inhibits LPS induced microglia activation. Mol 2013;18:3529-42.
Rawal Avinash K, Muddeshwar Manohar G, Biswas Saibal K. Rubia cordifolia, Fagonia cretica linn and Tinospora cordifolia exert neuroprotection by modulating the antioxidant system in rat hippocampal slices subjected to oxygen glucose deprivation. BMC Complementary Altern Med 2004;4(11):1-9.
Shanish AA, Santhivardhan C, Elango K, Jayasankar K, Kumar MN, Roy S, Deb P. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism. Indian J Pharmacol 2014;46(2):176-80.
Bairy KL, Rao Y, Kumar KB. Efficacy of Tinospora cordifolia on learning and memory in healthy volunteers: a double blind, randomized, placebo controlled study. Iranian J Pharmacol Therap 2004;3:57-60.
Agarwal A, Malini S, Bairy KL, Rao MS. Effect of Tinospora Cordifolia on learning and memory in normal and memory deficit rats. Indian J Pharmacol 2002;34:339-49.
Koetter U, Barrett M, Lacher S, Abdelrahman A, Dolnick D. Interactions of Magnolia and Ziziphus extracts with selected central nervous system receptors. J Ethnopharmacol 2009; 124(3):421-425.
Chang SC, Hsu BY, Chen BH. Structural characterization of polysaccharides from Zizyphus jujuba and evaluation of antioxidant activity. Int J Biol Macromol 2010; 47(4): 445-453
Heo HJ, Park YJ, Suh YM, Choi SJ, Kim MJ, Cho HY, et al. Effects of oleamide on choline acetyltransferase and cognitive activities. Biosci Biotechnol Biochem 2003; 67(6): 1284-1291.