PHYTOCHEMICAL TO INTERACT WITH NLS BINDING SITE ON IMA3 TO INHIBIT IMPORTIN Α/Β1 MEDIATED NUCLEAR IMPORT OF SARS-COV-2 CARGO
DOI:
https://doi.org/10.22159/ijpps.2020v12i8.38184Keywords:
Ivermectin, SARS-CoV-2, IMA3, Phytochemical and Molecular dockingAbstract
Objective: Ivermectin is an FDA-approved, broad-spectrum anti-parasitic agent. It was originally identified as an inhibitor of interaction between the human 29 immunodeficiency virus-1 (HIV-1) integrase protein (IN) and the Importin (IMP) α/β1 30 heterodimers, which are responsible for IN nuclear import. Recent studies demonstrate that ivermectin is worthy of further consideration as a possible SARS-CoV-2 antiviral.
Methods: We built the pathogen-host interactome and analyzed it using PHISTO. We compared Ivermectin and plant molecules for their interaction with Importin α3 (IMA3) using molecular docking studies.
Results: A phytochemical ATRI001 with the lowest binding energy-7.290 Kcal/mol was found to be superior to Ivermectin with binding energy-4.946 Kcal/mol.
Conclusion: ATRI001 may be a potential anti-SARS-CoV-2 agent; however, it requires clinical evaluation.
Downloads
References
Kanaan A, Raiaan K. Novel coronavirus (2019-NCOV): disease briefings. Asian J Pharm Clin Res 2020;13:22-7.
Leon C, Julian DD, Mike GC, David AJ, Kylie MW. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020;178:10478.
Raymond RR, Rowland, Vinita C, Ying F, Andrew P, Maureen K, et al. Intracellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein: the absence of nucleolar accumulation during infection and after expression as a recombinant protein in vero cells. J Virol 2005;79:11507-12.
Khalid AT, Qingjiao L, Linbai Y, Yingchun Z, Jing L, Yi Z, et al. Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Viral Res 2005;114:23-34.
Wulan WN, Heydet D, Walker EJ, Gahan ME, Ghildyal R. Nucleocytoplasmic transport of nucleocapsid proteins envel-oped RNA viruses. Front Microbiol 2015;6:553.
Hiscox JA, Wurm T, Wilson L, Britton P, Cavanagh D, Brooks G. The coronavirus infectious bronchitis virus nucleoprotein lo-calizes to the nucleolus. J Virol 2001;75:506-12.
Wurm T, Chen H, Hodgson T, Britton P, Brooks G, Hiscox JA. Localization to the nucleolus is a common feature of corona-virus nucleoproteins, and the protein may disrupt host cell di-vision. J Virol 2001;75:9345-56.
Frieman M, Yount B, Heise M, Kopecky Bromberg SA, Palese P, Baric RS. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear im-port factors on the rough endoplasmic reticulum/Golgi mem-brane. J Virol 2007;81:9812-24.
Macara IG. Transport into and out of the nucleus. Microbiol Mol Biol Rev 2001;65:570–94.
Bednenko J, Cingolani G, Gerace L. Nucleocytoplasmic transport: navigating the channel. Traffic 2003;4:127–35.
Stewart M. Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 2007;8:195–208.
Goldfarb DS, Corbett AH, Mason DA, Harreman MT, Adam SA. Importin alpha: a multipurpose nuclear-transport recep-tor. Trends Cell Biol 2004;14:505–14.
Cingolani G, Petosa C, Weis K, Muller CW. Structure of importin-β bound to the IBB domain of importin-α. Nature 1999;399:221–9.
Milles S, Mercadante D, Aramburu IV, Jensen MR, Banterle N, Koehler C, et al. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell 2015;163:734–45.
Lee SJ, Matsuura Y, Liu SM, Stewart M. Structural basis for nuclear import complex dissociation by RanGTP. Nature 2005;435:693–6.
Moroianu J, Blobel G, Radu A. Nuclear protein import: ran-GTP dissociates the karyopherin alphabeta heterodimer by displacing alpha from an overlapping binding site on beta. Proc Natl Acad Sci 1996;93:7059–62.
Kutay U, Bischoff FR, Kostka S, Kraft R, Gorlich D. Export of importin alpha from the nucleus is mediated by a specific nu-clear transport factor. Cell 1997;90:1061–71.
Bischoff FR, Gorlich D. RanBP1 is crucial for the release of RanGTP from importin β-related nuclear transport fac-tors. FEBS Lett 1997;419:249–54.
Kobe B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nat Struct Mol Biol 1999;6:388–97.
Fontes MR, Teh T, Kobe B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-α. J Mol Biol 2000;297:1183–94.
Min-Hsuan C, Iris BE, Gregory M, Nancy WK, Peter JS, Gino C. Phospholipid scramblase 1 contains a nonclassical nuclear lo-calization signal with a unique binding site in importin α. J Biol Chem 2005;280:10599–606.
Giesecke A, Stewart M. Novel binding of the mitotic regulator TPX2 (target protein for Xenopus kinesin-like protein 2) to importin-α. J Biol Chem 2010;285:17628–35.
Rajeshwer S, Sankhala RK, Lokareddy, Salma B, Ruth AP, Richard EG, et al. Three-dimensional context rather than NLS amino acid sequence determines importin α subtype specificity for RCC1. Nat Commun 2017;8:979.
Zhujun A, Kallesh DJ, Binchen W, Yingfeng Z, Sam K, Eric R, et al. Importin α3 interacts with HIV-1 integrase and contributes to HIV-1 nuclear import and replication. J Virol 2010;84:8650–63.
Shaw ML, Cardenas WB, Zamarin D, Palese P, Basler CF. Nucle-ar localization of the Nipah virus W protein allows for inhibi-tion of both virus-and toll-like receptor 3-triggered signaling pathways. J Virol 2005;79:6078–88.
Audsley MD, Jans DA, Moseley GW. Nucleocytoplasmic trafficking of Nipah virus W protein involves multiple discrete interactions with the nuclear import and export machinery. Biochem Biophys Res Commun 2016;479:429–33.
Pumroy RA, Ke S, Hart DJ, Zachariae U, Cingolani G. Molecular determinants for nuclear import of influenza A PB2 by importin α isoforms 3 and 7. Structure 2015;23:374–84.
Wei X, Megan RE, Dominika MB, Alicia RF, Anuradha M, Joshua BA, et al. Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with the nuclear import of phosphorylated STAT1. Cell Host Microbe 2014;16:187–200.
Nardozzi J, Wenta N, Yasuhara N, Vinkemeier U, Cingolani G. Molecular basis for the recognition of phosphorylated STAT1 by importin α5. J Mol Biol 2010;402:83–100.
Watson. Dietary components and immune function. Medicine 2010;3:421-68.
Moriarty RM, Surve BC, Naithani R, Chandersekera SN, Tiwari V, Shukla D. Synthesis and antiviral activity of Abyssinone II analogs. IACS National Meeting, Chicago, IL; 2007. p. 25–9.
Jingxu G, Kexin H, Feng W, Leixiang Y, Yubing F, Haibo L, et al. Preparation of two sets of 5,6,7-trioxygenated dihydroflavonol derivatives as free radical scavengers and neuronal cell protectors to oxidative damage. Bioorg Med Chem 2009;17:3414-25.
Ren Q, Song X. Use of a composition containing dihydromyricetin and myricetin in preparation of antiviral medicines. Faming Zhuanli Shenqing Gongkai Shuomingshu 2005;20:33.
Andersen OM, Helland DE, Andersen KJ. Anthocyanidin and anthocyanidin derivatives, and their isolation, for treatment of cancer, diseases caused by lesions in connective tissues, and diseases caused by viruses. PCT Int Appl 1997;5:121.
Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, et al. Spe-cific plant terpenoids and lignoids possess potent antiviral ac-tivities against severe acute respiratory syndrome coronavirus. J Med Chem 2007;50:4087.
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and in-fluence on virtual screening enrichments. J Comput Aid Mol Des 2013;27:221–34.
Hwang S, Son SW, Kim SC, Kim YJ, Jeong H, Lee D. A protein interaction network associated with asthma. J Theor Biol 2008;252:722-31.
Jacobson MP, Pincus DL, Rapp C, Day TJF, Honig B, Shaw DE, et al. A hierarchical approach to all-atom protein loop prediction. Proteins 2004;55:351-67.
Harathi P, Satyavati D, Deepak RG, Vivekananda B, Rajendra PV. Design synthesis of novel acridine tagged pyrazole derivatives as aurora kinase inhibitors. Asian J Pharm Clin Res 2020;13:78-85.
Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Computer 2010;6:1509–19.
Dagan Wiener A, Nissim I, Ben AN. Bitter or not? bitter predict, a tool for predicting taste from chemical structure. Sci Rep 2017;7:12074.
Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. Extra precision glide: docking and scoring in-corporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 2006;49:6177–96.
Raman K. Construction and analysis of protein-protein interaction networks. Sci Rep 2019;9:4980.
Hwang S, Son SW, Kim SC, Kim YJ, Jeong H, Lee D. A protein interaction network associated with asthma. J Theor Biol 2008;252:722-31.
Masahiro OK, Yoshihiro Y. Importin α: functions as a nuclear transport factor and beyond. Proc Japan Acad Ser B Phys Biol Sci 2018;94:259–74.
Nakielny S, Dreyfuss G. Import and export of the nuclear pro-tein import receptor transportin by a mechanism independent of GTP hydrolysis. Curr Biol 1998;8:89–95.
Kalderon D, Roberts BL, Richardson WD, Smith AE. A short amino acid sequence able to specify nuclear loca-tion. Cell 1984;39:499–509.
Jiao Y, Liang Z, Ling X, Jian L, Lihua Y, Wenran D, et al. Nuclear import of NLS-RARα is mediated by importin α/β. Cell Sig 2020;69:1-11.
Elena C, Marc U, Lore L, Gunter B, John K. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell 1998;94:193-204.
Niraj KJ, Pravir K. Molecular docking studies for the compara-tive analysis of different biomolecules to target hypoxia-inducible factor-1α. Int J Appl Pharm 2017;9:83-9.
Megan LP, Raul ZC, Marc CN. Conformational energy range of ligands in protein crystal structures: the difficult quest for ac-curate understanding. J Mol Recognit 2017;30:1-32.