SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF NOVEL FUSED PYRAZOLES
Keywords:
Antimicrobial, Hydrazones, MIC, NilAbstract
Objective: The aim of the present work was to synthesize fused pyrazoles and examine them for their in vitro antimicrobial activity.
Methods: The formyl pyrazoles were synthesized by Vilsmeier–Haack reaction from o-hydroxy acetophenone hydrazones. The pyrazoles on oxidative cyclisation in the presence of ethanol and catalytic amount of H2SO4 yielded pyrano [4,3-c] pyrazoles. The structures of the synthesized derivatives were confirmed by Mass, 1H NMR and elemental analysis. The synthesized new pyranopyrazoles were screened for their antimicrobial activity by broth dilution technique.
Results: The results of the antimicrobial assay revealed that the compound 4b having chloro substitution showed good activity against different microorganisms tested.
Conclusion: It is noteworthy that the compounds synthesized by a simple and accessible procedure leads to a molecules of promising antimicrobial activity.
Â
Downloads
References
Eicher T, Hauptmann S. The Chemistry of Heterocycles: Structure, Reactions, Syntheses and Applications. Edition IInd, Wiley-VCH; 2003.
Wustrow DJ, Capiris T, Rubin R, Knobelsdorf JA, Akunne H, Davis MD, et al. Pyrazolo[1,5-a]pyrimidine CRF-1 receptor antagonists. Bioorg Med Chem Lett 1998;8:2067-70.
Eid AI, Kira MA, Fahmy HH. Synthesis of new pyrazolones as potent anti-inflammatory agents. J Pharm Belg 1978;33:303-11.
Govindaraju M, Mylarappa BN, Ajay Kumar K. Synthesis of novel pyrazole derivatives and their efficacy as antimicrobial agents. Int J Pharm Pharm Sci 2013;5(4):734-7.
Sammelson RE, Caboni P, Durkin KA, Casida JE. GABA receptor antagonists and insecticides: common structural features of 4-alkyl-1-phenylpyrazoles and 4-alkyl-1-phenyl trioxabicyclo octanes. Bioorg Med Chem 2004;12:3345-55.
Sangani CB, Mungra DC, Patel MP, Patel RG. Synthesis and in vitro antimicrobial screening of new pyrano[4,3-b]pyran derivatives of 1H-pyrazole. Chin Chem Lett 2012;23:57-60.
Kassem ME, El-Sawy ER, Abd-Alla HI, Mandour AH, Abdel-Mogeed D, El-Safty MM. Synthesis, antimicrobial, and antiviral activities of some new 5-sulphonamido-8-hydroxyquinoline derivatives. Arch Pharm Res 2012;35(6):955-64.
Chattapadhyay TK, Dureja PJ. Antifungal Activity of 4-Methyl-6-alkyl-2H-pyran-2-ones. Agric Food Chem 2006;54(6):2129-33.
Kuo SC, Huang LJ, Nakamura H. Studies on heterocyclic compounds. Synthesis and analgesic and anti-inflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives. J Med Chem 1984;27(4):539-44.
Armesto D, Horspool WM, Martin N, Ramos A, Seoane C. Synthesis of cyclobutenes by the novel photochemical ring contraction of 4-substituted 2-amino-3,5-dicyano-6-phenyl-4H-pyrans. J Org Chem 1989;54(13):3069-72.
Kumar D, Reddy VB, Sharada S, Dube U, Sumana KA. A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur J Med Chem 2009;44(9):3805-9.
Kostakis IK, Magiatis P, Pouli N, Marakos P, Skaltsounis A, Pratsinis H, et al. Design, synthesis, and anti-proliferative activity of some new pyrazole-fused amino derivatives of the pyranoxanthenone, pyranothioxanthenone, and pyranoacridone ring systems: a new class of cytotoxic agents. J Med Chem 2002;45(12):2599-609.
Abdelrazek FM, Metz P, Kataeva O, Jager A, El-Mahrouky SF. Synthesis and molluscicidal activity of new chromene and pyrano [2,3-c]pyrazole derivatives. Arch Pharm 2007;340:543-8.
Kuo SC, Huang LJ, Nakamura H. Studies on heterocyclic compounds. 6. Synthesis and analgesic and anti-inflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives. J Med Chem 1984;27:539-44.
Ajay Kumar K, Lokanatha Rai KM, Umesha KB. Synthesis and evaluation of antifungal and antibacterial activity of ethyl 3,5-diarylisoxazole-4-carboxylates. J Chem Res 2001;10:436-8.
Ajay Kumar K, Lokanatha Rai KM. Synthesis and evaluation of antimicrobial activity of 4,5-dihydro-12,4-oxadiazoles. Bulg Chem Commun 2004;36:249-52.
Ajay Kumar K, Lokanatha Rai KM, Vasanth Kumar G, Mylarappa BN. A facile route for the synthesis of ethyl N-aryl-2,6-dioxo-piperid-3-ene-4-carboxylates and their biological activity. Int J Pharm Pharm Sci 2012;4 (Suppl 4):564-8.