DISTRIBUTION AND COMPOSITION OF THE MAIN ACTIVE COMPONENTS FOUND IN STINGLESS BEE PROPOLIS FROM VARIOUS REGIONS IN INDONESIA

Authors

  • MAHANI Food Technology Department, Faculty of Agric Industrial Technology, Universitas Padjadjaran, Indonesia, Community Nutrition Department, Faculty of Human Ecology, IPB University, Indonesia
  • MICHELLE Food Technology Department, Faculty of Agric Industrial Technology, Universitas Padjadjaran, Indonesia
  • YANA CAHYANA Food Technology Department, Faculty of Agric Industrial Technology, Universitas Padjadjaran, Indonesia
  • AHMAD SULAEMAN Community Nutrition Department, Faculty of Human Ecology, IPB University, Indonesia
  • HARDINSYAH Community Nutrition Department, Faculty of Human Ecology, IPB University, Indonesia
  • NUNUNG NURJANAH National Institute of Health Research and Development, Indonesian Ministry of Health Indonesia
  • SUNARNO National Institute of Health Research and Development, Indonesian Ministry of Health Indonesia
  • KAMBANG SARIADJI National Institute of Health Research and Development, Indonesian Ministry of Health Indonesia

DOI:

https://doi.org/10.22159/ijpps.2021v13i2.39521

Keywords:

Active components, Concentration, Distribution, Plant Resin, Stingless bee propolis

Abstract

Objective: The aim of this study is to map out the distribution and composition of the main active components found in stingless bee propolis from various regions in Indonesia.

Methods: The stingless bee propolis used was obtained from ten different provinces in Indonesia and the active components analysis using Gas Chromatography-Mass Spectrometer (GC-MS) pyrolyzer.

Results: This study found 85 main types of active components with concentrations of ≥ 1%. The most frequently found active component was alpha-d-glucopyranoside, which had an average concentration of 28.20%.

Conclusion: There were differences between the main active components found in 14 samples of stingless bee propolis obtained from 10 provinces in Indonesia, which was due to the variety of bee species and plant origin.

Downloads

Download data is not yet available.

References

Kahono S, Chantawannakul P, Engel MS. Social bees and the current status of beekeeping in Indonesia. In: Asian Beekeeping in the 21st Century. Springer Verlag; 2018. p. 287–306.

Norowi MH, Fahimie MJ, Sajap AS, Rosliza J, Suri R. Conservation and sustainable utilization of stingless bees for pollination services in agricultural ecosystems in Malaysia. Japan; 2010.

Mahani B, Nurhadi B, Subroto E, Herudiyanto M. Bee propolis trigona spp potential and uniqueness in Indonesia. Proceeding University Malaysia Terengganu Annual Sciences. Terengganu, Malaysia; 2011.

Ichwan F, Yoza D, Budiani ES, Defri Yoza, Budiani ES. Prospek pengembangan budidaya lebah. Jom Faperta UR 2016;3:1–10.

Sforcin JM, Bankova V, Kuropatnicki AK. Medical benefits of honeybee products. Evidence Based Complement Altern Med 2017:2–4. DOI:10.1155/2017/2702106

Mahani, Karim RA, Nurjanah N. Keajaiban propolis trigona. Jakarta: Pustaka Bunda; 2011.

Lirizka SP. Kandungan fitokimia dan toksisitas propolis lebah trigona spp. Asal Propinsi Banten, Jawa Barat, Jawa Tengah, NTB, dan Maluku. Institut Pertanian Bogor; 2016.

Sforcin JM. Biological properties and therapeutic applications of propolis. Phyther Res 2016;30:894–905.

Kumar N, KK Ahmad M, Dang R, Husain A. Antioxidant and antimicrobial activity of propolis from Tamil Nadu zone. J Med Plants Res 2008;2:361–4.

Huang X, Guo X, Luo H, Fang X, Zhu T, Zhang X, et al. Fast differential analysis of propolis using surface desorption atmospheric pressure chemical ionization mass spectrometry. Int J Anal Chem 2015:9. DOI:10.1155/2015/176475

Vit PPSRM, Roubik DW. Pot honey–a legacy of stingless bees. London: Springer; 2013. p. 654.

Soltani EK, Mokhnache K, Noureddine C. Chemical composition and antibacterial activity of Algerian propolis against fish pathogenic bacteria. J Drug Delivery Ther 2020;10:12–9.

Kalsum N, Sulaeman A, Setiawan B, Wibawan IWT. Phytochemical profiles of propolis trigona spp. from three regions in Indonesia using GC-MS. J Biol Agric Health 2016;6:31–7.

Uzel A, Sorkun K, Oncag O, Cogulu D, Gencay O, Salih B. Chemical compositions and antimicrobial activities of four different anatolian propolis samples. Microbiol Res 2005;160:189–95.

Sativa N, Agustin R. Analisis uji kadar senyawa dan uji antioksidan ekstrak propolis coklat dari lebah trigona sp. Beranda 2018;2:61–8.

Hasan AEZ, Artika IM, Kuswandi, Tukan GD. Analysis of active components of trigona spp propolis from pandeglang Indonesia. Glob J Biol Agric Heal Sci 2014;3:215–9.

Salatnaya H. Produktivitas lebah trigona spp. Sebagai penghasil propolis pada perkebunan pala monokultur dan polikultur di jawa barat. Institut Pertanian Bogor; 2012.

Fikri AM, Sulaeman A, Marliyati SA, Fahrudin M. Antiemetic activity of trigona spp. propolis from three provinces of Indonesia with two methods of extraction. Pharmacogn J 2017;10:120–2.

Lukmandaru G. Variability in the natural termite resistance of plantation teak wood and its relations with wood extractive content and color properties. Indones J For Res 2011;8:17–31.

Sulaeman A, Mahani, Hardinsyah. Specific phytochemical and nutrition analysis of Indonesian propolis to support liquid propolis standardization and evaluation biological activity on mycobacterium tuberculosis [Internet]. Lembaga Penelitian dan Pengabdian Kepada Masyarajat; 2017. Available from: http://lppm.ipb.ac.id/?page_id=254andnopanggil=andtahun=andnama=andkeywords=andjudul=andabstrak=andfakultas=andsumberdana=andjenis=andpageNum=123andtotalRows=10915andx=viewandid=PUBIntl/017.15/SUL/s [Last accessed on 17 Jun 2020].

Bankova V. Chemical diversity of propolis and the problem of standardization. J Ethnopharmacol 2005;100:114–7.

Mahani M, Sulaeman A, Anwar F, Damanik MRM, Hardinsyah H, Ploeger A. Efficacy of propolis supplementation to accelerate healing process and body weight recovery of pulmonary tuberculosis patients. J Gizi Dan Pangan 2018;13:1–10.

Bharti U, Kumar NR, Kaur J. Protective effect of bee propolis against anti-tuberculosis drugs (Rifampicin and isoniazid)-induced hematological toxicity in sprague dawley rats. Asian J Pharm Clin Res 2017;10:188–90.

Gaudin T, Rotureau P, Pezron I, Fayet G. Conformations of n-alkyl-α/β-D-glucopyranoside surfactants: Impact on molecular properties. Comput Theor Chem 2017;1101:20–9.

Nedialkova ZK, Nedialkov P, Burdina MK, Simeonova RL. Chenopodium bonus-henricus l.-a source of hepatoprotective flavonoids. Fitoterapia 2017;18:13–20.

Chang W, Li Y, Zhang M, Zheng S, Li Y, Lou H. Solasodine-3-O-b-D-glucopyranoside kills candida albicans by disrupting the intracellular vacuole. Food Chem Toxicol 2017;106:139–46.

Shaikh Q, Yang M, Hussain K, Lateef M. (PGG) Analogues: design, synthesis, anti-tumor and anti-oxidant activities carbohydrate research (PGG) analogs: design, synthesis, anti-tumor and anti-oxidant activities; 2016.

Kim YH, Yang X, Yamashta S, Kumazoe M, Huang Y, Nakahara K, et al. 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose increases a population of T regulatory cells and inhibits IgE production in ovalbumin-sensitized mice. Int Immunopharmacol 2015;26:30–6.

Vaithiyanathan V, Mirunalini Sankaran. Quantitative variation of bioactive phyto compounds in ethyl acetate and methanol extracts of Pergularia daemia (Forsk.) chiov. J Biomed Res 2015;29:169–72.

Anzaku AA, Akyala JI, Juliet A, Obianuju EC. Antibacterial activity of lauric acid on some selected clinical isolates. Ann Clin Lab Res 2017;5:1–5.

Faizah H, Farida R, Soedarsono N. Effect of propolis extract and propolis candies on the growth of streptococcus sobrinus growth. Asian J Pharm Clin Res 2017;10:16–9.

Rajeswari G, Murugan M, Mohan VR. GC-MS analysis of bioactive components of hugonia mystax L.(Linaceae). Res J Pharm Biol Chem Sci 2012;3:301–8.

Wardiyah. Kimia Organik. Jakarta Selatan: Kementerian Kesehatan Republik Indonesia; 2016. p. 217.

Uma M, Jothinayaki S, Kumaravel S, Kalaiselvi P. Determination of bioactive components of plectranthus amboinicus lour by GC-MS analysis. New York Sci J 2011;497:1–5.

Ahmed FRS, Amin R, Hasan I, Asaduzzaman AKM, Kabir SR. Antitumor properties of a methyl-β-D-galactopyranoside specific lectin from Kaempferia rotunda against Ehrlich ascites carcinoma cells. Int J Biol Macromol 2017;102:952–9.

Trusheva B, Popova M, Bankova V, Simova S, Cristina M, Miorin PL, et al. Bioactive constituents of brazilian red propolis. Oxford Univ Press 2006;3:249–54.

Mahdavi M. Identification of chemical compounds and antimicrobial effects of essential oils of artemisia scoparia and artemisia aucheri. Int J Farming Allied Sci 2015;4:514–21.

Simoes M, Bennet RN, Rosa EAS. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat Prod Rep 2009;26:746–57.

Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005;26:343–56.

Eda M, Hayashi Y, Kinoshita K, Koyama K, Takahashi K, Akutu K. Anti-emetic principles of water extract of Brazilian propolis. Pharm Biol 2005;43:184–8.

Zheng L, Shi LK, Zhao CW, Jin QZ, Wang XG. Fatty acid, phytochemical, oxidative stability and in vitro antioxidant property of sea buckthorn (Hippophaë rhamnoides L.) oils extracted by supercritical and subcritical technologies. Food Sci Technol 2017;86:507–13.

Negi BS, Dave BP, Agarwal YK. Evaluation of antimicrobial activity of bauhinia purpurea leaves under in vitro conditions. Indian J Microbiol 2012;52:360–5.

Published

01-02-2021

How to Cite

MAHANI, MICHELLE, . Y. CAHYANA, A. SULAEMAN, HARDINSYAH, N. NURJANAH, SUNARNO, and K. SARIADJI. “DISTRIBUTION AND COMPOSITION OF THE MAIN ACTIVE COMPONENTS FOUND IN STINGLESS BEE PROPOLIS FROM VARIOUS REGIONS IN INDONESIA”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 13, no. 2, Feb. 2021, pp. 44-49, doi:10.22159/ijpps.2021v13i2.39521.

Issue

Section

Original Article(s)

Most read articles by the same author(s)