PREBIOTICS FOR ACUTE ISCHEMIC STROKE

Authors

  • STEPHANI NESYA RENAMASTIKA Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
  • DIAH RETNO WAHYUNINGRUM Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
  • VIDA ARIMA PUTRI Nutritionist at Dolopo Regional General Hospital, Madiun, 63174, Indonesia
  • RIHADATUL AISY Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia

DOI:

https://doi.org/10.22159/ijpps.2021v13i5.41110

Keywords:

Dysbiosis, Intestinal microbiota, Prebiotics, SCFA, Acute ischemic stroke

Abstract

There is two-way communication between the gut and the brain. The condition of the quality and quantity of microbiota in the gut greatly affects the communication process or commonly known as the microbiota-gut-brain axis. Acute ischemic stroke can affect the quality and quantity of microbiota in the gut, which leads to intestinal dysbiosis. Thus, it might produce an inflammatory response that can change immune homeostatic. This can lead to poor clinical outcomes and neurologic function and an increase in mortality. Dysbiosis is a condition where there are qualitative and quantitative changes in the composition, distribution, and metabolic activity of intestinal microbiota which have a detrimental effect on human health, in other words, there is a decrease in the number of probiotic bacteria in the gut, which provide health benefits. The conditions for a good probiotic are that the probiotics have to be kept alive in the digestive tract to obtain health benefits. The approach taken to keep these bacteria alive is the use of prebiotics. Prebiotics are components of food that cannot be digested by the digestive tract enzymatically. Thus, they are fermented by microbiota in the large intestine to produce metabolites, one of which is short-chain fatty acids (SCFA) as a product of fermentation. SCFA (Short Chain Fatty Acid) or short-chain fatty acids play a neuroprotective role, synthesizing neurotransmitters and modulating the immune system. Therefore, this review explains how stroke affects the quantity and quality of microbiota in the gut in the communication process of the microbiota-gut-brain axis and the role of prebiotics in improving dysbiosis. Hence, it can provide better post-stroke clinical outcomes.

Downloads

Download data is not yet available.

References

Xing C, Arai K, Lo EH, Hommel M. Pathophysiologic cascades in ischemic stroke. Int J Stroke 2012;7:378–85.

Endres M, Dirnagl U, Moskowitz MA. The ischemic cascade and mediators of ischemic injury. Handb Clin Neurol 2008;92:31–41.

Guo Y, Li P, Guo Q, Shang K, Yan D, Du S, et al. Pathophysiology and biomarkers in acute ischemic stroke-a review. Trop J Pharm Res 2013;12:1097–105.

Heart Disease and Stroke Statistics-At-a-Glance [Internet]. American Heart Association; 2019.

Basic Health Research. Heal Res Dev Agency, Minist Heal Repub Indones; 2018.

Karuniawati H, Ikawati Z, Gofir A. Adherence to secondary stroke prevention therapies in ischemic stroke patients at teaching hospital in Central Java Indonesia. Asian J Pharm Clin Res 2017;10:28–30.

Ministry of Health Republic of Indonesia. Heart Health Situation. Cent Data Information, Minist Heal Repub Indones Jakarta Selatan; 2014.

Winek K, Dirnagl U, Meisel A. The gut microbiome as a therapeutic target in central nervous system diseases: implications for stroke. Neurotherapeutics 2016;13:762–74.

Durgan DJ, Lee J, McCullough LD, Bryan RM. Examining the role of the microbiota-gut-brain axis in stroke. Stroke 2019;50:2270–7.

Chen R, Wu P, Cai Z, Fang Y, Zhou H, Lasanajak Y, et al. Puerariae lobatae radix with chuanxiong rhizoma for treatment of cerebral ischemic stroke by remodeling gut microbiota to regulate the brain–gut barriers of dietary capsaicin against chronic low-grade inflammation. J Nutr Biochem Elsevier Inc 2019;65:101–14.

Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, et al. Dysbiosis of gut microbiota with reduced trimethylamine-n-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc 2015;4:1–13.

Yamashiro K, Tanaka R, Urabe T, Ueno Y, Yamashiro Y, Nomoto K, et al. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS One 2017;12:1–15.

Manco M, Putignani L, Bottazzo GF. Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr Rev 2010;31:817–44.

Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol Springer US 2019;16:461–78.

Russo R, Cristiano C, Avagliano C, De Caro C, La Rana G, Raso GM, et al. Gut-brain axis: role of lipids in the regulation of inflammation, pain and CNS diseases. Curr Med Chem 2017;25:3930–52.

Brahe LK, Astrup A, Larsen LH. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev 2013;14:950–9.

Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016;165:1332–45.

Gibson GR, Probert HM, Loo J Van, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 2004;17:259–75.

Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM, Hassan FA. Prebiotics as functional foods: a review. J Funct Foods Elsevier Ltd 2013;5:1542–53.

Sanches Lopes SM, Francisco MG, Higashi B, de Almeida RTR, Krausova G, Pilau EJ, et al. Chemical characterization and prebiotic activity of fructo-oligosaccharides from stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures. Carbohydr Polym Elsevier Ltd 2016;152:718–25.

Grimoud J, Durand H, Courtin C, Monsan P, Ouarne F, Theodorou V, et al. In vitro screening of probiotic lactic acid bacteria and prebiotic glucooligosaccharides to select effective synbiotics. Anaerobe 2010;16:493–500.

Machado MTC, Eca KS, Vieira GS, Menegalli FC, Martinez J, Hubinger MD. Prebiotic oligosaccharides from artichoke industrial waste: evaluation of different extraction methods. Ind Crops Prod 2015;76:141–8.

Markowiak P, Slizewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017;9:1–30.

Petkova N. Characterization of inulin from black salsify (Scorzonera hispanica l.) for food and pharmaceutical purposes. Asian J Pharm Clin Res 2018;11:221–5.

Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B, et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci 2016;36:7428–40.

Stanley D, Moore RJ, Wong CHY. An insight into intestinal mucosal microbiota disruption after stroke. Sci Rep Springer US 2018;8:1–12.

Stanley D, Mason LJ, MacKin KE, Srikhanta YN, Lyras D, Prakash MD, et al. Translocation and dissemination of commensal bacteria in post-stroke infection. Nat Med Nature Publishing Group 2016;22:1277–84.

Houlden A, Goldrick M, Brough D, Vizi ES, Lenart N, Martinecz B, et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun Authors 2016;57:10–20.

Crapser J, Ritzel R, Verma R, Venna VR, Liu F, Chauhan A, et al. Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice. Aging (Albany NY) 2016;8:1049–63.

Wen SW, Wong CHY. An unexplored brain-gut microbiota axis in stroke. Gut Microbes 2017;8:601–6.

Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med 2016;22:516–23.

Erny D, De Angelis ALH, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015;18:965–77.

Sun J, Ling Z, Wang F, Chen W, Li H, Jin J, et al. Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis. Neurosci Lett 2016;613:30–5.

Sun J, Wang F, Ling Z, Yu X, Chen W, Li H, et al. Clostridium butyricum attenuates cerebral ischemia/reperfusion injury in diabetic mice via modulation of gut microbiota. Brain Res Elsevier 2016;1642:180–8.

Durgan DJ, Ganesh BP, Cope JL, Ajami NJ, Phillips SC, Petrosino JF, et al. Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension 2016;67:469–74.

Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Sahay B, et al. Gut microbiota dysbiosis is linked to hypertension. Hypertension 2016;65:1331–40.

Spychala MS, Venna VR, Jandzinski M, Doran SJ, Durgan DJ, Ganesh BP, et al. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann Neurol 2018;84:23–36.

Davani Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 2019;8:1–27.

Kale MA, Bindu SM, Khadkikar P. Role of antioxidants and nutrition in oxidative stress: a review. Int J Appl Pharm 2015;7:1–4.

Ouwehand AC, Derrien M, De Vos W, Tiihonen K, Rautonen N. Prebiotics and other microbial substrates for gut functionality. Curr Opin Biotechnol 2005;16:212–7.

Slizewska K, Nowak A, Barczynska R, Libudzisz Z. Prebiotyki-definicja, własciwosci i zastosowanie w przemysle. Zywnosc Nauk Technol Jakosc 2013;20:5–20.

Patterson JA, Burkholder KM. Application of prebiotics and probiotics in poultry production. Poult Sci Poultry Sci Assoc Inc 2003;82:627–31.

Annison G, Illman RJ, Topping DL. Acetylated, propionylated or butyrylated starches raise large bowel short-chain fatty acids preferentially when fed to rats. J Nutr 2003;133:3523–8.

Baurhoo B, Letellier A, Zhao X, Ruiz Feria CA. Cecal populations of lactobacilli and bifidobacteria and Escherichia coli populations after in vivo Escherichia coli challenge in birds fed diets with purified lignin or mannanoligosaccharides. Poult Sci Poultry Sci Assoc Inc 2007;86:2509–15.

Loo J Van, Clune Y, Bennett M, Collins JK. The SYNCAN project: goals, set-up, first results and settings of the human intervention study. Br J Nutr 2005;93:S91–8.

Schley PD, Field CJ. The immune-enhancing effects of dietary fibres and prebiotics. Br J Nutr 2002;87:S221–30.

Grajek W, Olejnik A, Sip A. Probiotics, prebiotics and antioxidants as functional foods. Acta Biochim Pol 2005;52:665–71.

Gibson GR, Wang X. Regulatory effects of the growth of bifidobacteria on other large intestinal microorganisms. J Appl Bacteriol 1994;77:412–20.

Bovee Oudenhoven IMJ, Termont DSML, Heidt PJ, Van Der Meer R. Increasing the intestinal resistance of rats to the invasive pathogen Salmonella enteritidis: additive effects of dietary lactulose and calcium. Gut 1997;40:497–504.

De Preter V, Hamer HM, Windey K, Verbeke K. The impact of pre-and/or probiotics on human colonic metabolism: does it affect human health? Mol Nutr Food Res 2011;55:46–57.

Demigne C, Jacobs H, Moundras C, Davicco MJ, Horcajada MN, Bernalier A, et al. Comparison of native or reformulated chicory fructans, or non-purified chicory, on rat cecal fermentation and mineral metabolism. Eur J Nutr 2008;47:366–74.

Hoffman JD, Yanckello LM, Chlipala G, Hammond TC, McCulloch SD, Parikh I, et al. Dietary inulin alters the gut microbiome, enhances systemic metabolism and reduces neuroinflammation in an APOE4 mouse model. PLoS One 2019;14:1–22.

Savignac HM, Corona G, Mills H, Chen L, Spencer JPE, Tzortzis G, et al. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochem Int Elsevier Ltd 2013;63:756–64.

Jia S, Lu Z, Gao Z, An J, Wu X, Li X, et al. Chitosan oligosaccharides alleviate cognitive deficits in an amyloid-β1-42-induced rat model of alzheimer’s disease. Int J Biol Macromol Elsevier BV 2016;83:416–25.

Song L, Gao Y, Zhang X, Le W. Galactooligosaccharide improves the animal survival and alleviates motor neuron death in SOD1G93A mouse model of amyotrophic lateral sclerosis. Neuroscience 2013;246:281–90.

Savignac HM, Couch Y, Stratford M, Bannerman DM, Tzortzis G, Anthony DC, et al. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain Behav Immun Elsevier Inc 2016;52:120–31.

Gronier B, Savignac HM, Di Miceli M, Idriss SM, Tzortzis G, Anthony D, et al. Increased cortical neuronal responses to NMDA and improved attentional set-shifting performance in rats following prebiotic (B-GOS®) ingestion. Eur Neuropsychopharmacol Elsevier BV ECNP 2018;28:211–24.

Liu Y, Jin W, Deng Z, Wang J, Zhang Q. Preparation and neuroprotective activity of glucuronomannan oligosaccharides in an MPTP-Induced Parkinson’s Model. Mar Drugs 2020;18:438.

Zhu L, Li R, Jiao S, Wei J, Yan Y, Wang ZA, et al. Blood-brain barrier permeable chitosan oligosaccharides interfere with β-amyloid aggregation and alleviate β-amyloid protein mediated neurotoxicity and neuroinflammation in a dose-and degree of polymerization-dependent manner. Mar Drugs 2020;18:488.

Chen D, Yang X, Yang J, Lai G, Yong T, Tang X, et al. Prebiotic effect of Fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front Aging Neurosci 2017;9:1–28.

Chunchai T, Thunapong W, Yasom S, Wanchai K, Eaimworawuthikul S, Metzler G, et al. Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. J Neuroinflammation J Neuroinflammation 2018;15:1–15.

Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 2009;294:1–8.

Fernandes J, Su W, Rahat Rozenbloom S, Wolever TMS, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 2014;4:e121.

Luu M, Pautz S, Kohl V, Singh R, Romero R, Lucas S, et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat Commun Springer US 2019;10:1–12.

Cummings JH, Pomare EW, Branch HWJ, Naylor CPE, MacFarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987;28:1221–7.

Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 1990;70:567–90.

Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc 2003;62:67–72.

Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 2016;19:29–41.

Smith EA, Macfarlane GT. Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 1997;3:327–37.

Smith EA, Macfarlane GT. Enumeration of amino acid fermenting bacteria in the human large intestine: e¡ects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiol Ecol 1998;25:355-68.

Windey K, de Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res 2012;56:184–96.

Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate utilization and butyryl coenzyme a (CoA): acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 2002;68:5186–90.

Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ. Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 2004;91:915–23.

Bugaut M. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp Biochem Physiol Part B Biochem 1987;86:439–72.

Vijay N, Morris ME. Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des 2014;20:1487–98.

Schonfeld P, Wojtczak L. Short-and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res 2016;57:943–54.

Sheth M, Chand V, Thakuria A. Inflated levels of SCFA, bifidobacteria and lactobacillus improves the status of pre hypertension and type 2 diabetes mellitus in subjects residing in North East India–a randomized control trial with synbiotic supplementation. Int J Curr Pharm Res 2015;7:3–6.

Primec M, Micetic Turk D, Langerholc T. Analysis of short-chain fatty acids in human feces: a scoping review. Anal Biochem Elsevier Inc 2017;526:9–21.

Lewis K, Lutgendorff F, Phan V, Soderholm JD, Sherman PM, McKay DM. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm Bowel Dis 2010;16:1138–48.

Peng L, Li ZR, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in caco-2 cell monolayers. J Nutr 2009;139:1619–25.

Gaudier E, Rival M, Buisine MP, Robineau I, Hoebler C. Butyrate enemas upregulate muc genes expression but decrease adherent mucus thickness in mice colon. Physiol Res 2009;58:111–9.

O’Keefe SJD. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol Nature Publishing Group 2016;13:691–706.

Mohajeri MH, Brummer RJM, Rastall RA, Weersma RK, Harmsen HJM, Faas M, et al. The role of the microbiome for human health: from basic science to clinical applications. Eur J Nutr Springer Berlin Heidelberg 2018;57:60.

Bolognini D, Tobin AB, Milligan G, Moss CE. The pharmacology and function of receptors for short-chain fatty acids. Mol Pharmacol 2016;89:388–98.

Cherbut C, Ferrier L, Roze C, Anini Y, Blottiere H, Lecannu G, et al. Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. Am J Physiol Gastrointest Liver Physiol 1998;275:1415–22.

Puddu A, Sanguineti R, Montecucco F, Viviani GL. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm 2014;2014:1–9.

Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF. The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis? Neurochem Int Elsevier Ltd 2016;99:110–32.

Kien CL, Peltier CP, Mandal S, Davie JR, Blauwiekel R. Effects of the in vivo supply of butyrate on histone acetylation of cecum in piglets. J Parenter Enter Nutr 2008;32:51–6.

Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017;20:145–55.

Arpaia N, Campbell C, Fan X, Dikiy S, Van Der Veeken J, Deroos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nat Nat Publishing Group 2013;504:451–5.

Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic treg cell homeostasis. Science 2013;341:569–73.

Haghikia A, Jorg S, Duscha A, Berg J, Manzel A, Waschbisch A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 2016;44:951–3.

Li Z, Yi CX, Katiraei S, Kooijman S, Zhou E, Chung CK, et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 2018;67:1269–79.

Mollica MP, Raso GM, Cavaliere G, Trinchese G, Filippo C De, Aceto S, et al. Butyrate regulates liver mitochondrial function, efficiency, and dynamic, in insulin-resistant obese mice. Diabetes 2017;66:1405–18.

De Vadder F, Kovatcheva Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014;156:84–96.

Szentirmai E, Millican NS, Massie AR, Kapas L. Butyrate, a metabolite of intestinal bacteria, enhances sleep. Sci Rep 2019;9:1–9.

Kekuda R, Manoharan P, Baseler W, Sundaram U. Monocarboxylate 4 mediated butyrate transport in a rat intestinal epithelial cell line. Dig Dis Sci 2013;58:660–7.

Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne) 2020;11:1–14.

Liu J, Sun J, Wang F, Yu X, Ling Z, Li H, et al. Neuroprotective effects of clostridium butyricum against vascular dementia in mice via metabolic butyrate. Biomed Res Int 2015;2015:1–12.

Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014;6:1–12.

Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC, et al. Microbiome–host systems interactions: protective effects of propionate upon the blood–brain barrier. Microbiome Microbiome 2018;6:1–13.

Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell Elsevier Inc 2016;167:915–32.

Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross talk: the microbiota and neurodevelopmental disorders. Front Neurosci 2017;11:1–31.

Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 2017;595:489–503.

Hong S, Hong S, Beja-glasser VF, Nfonoyim BM, Frouin A, Li S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016;8373:1–9.

Wilton DK, Dissing Olesen L, Stevens B. Neuron glia signaling in synapse elimination. Annu Rev Neurosci 2019;42:107–27.

Gautiar EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 2012;13:1118–28.

Stanisavljevic S, Cepic A, Bojic S, Veljovic K, Mihajlovic S, Đedovic N, et al. Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in dark agouti rats. Sci Rep 2019;9:1–13.

Minter MR, Hinterleitner R, Meisel M, Zhang C, Leone V, Zhang X, et al. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer’s disease. Sci Rep 2017;7:1–18.

Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler Castrillo P, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease. Sci Rep Nature Publishing Group 2016;6:1–12.

Jang HM, Lee HJ, Jang SE, Han MJ, Kim DH. Evidence for interplay among antibacterial-induced gut microbiota disturbance, neuro-inflammation, and anxiety in mice. Mucosal Immunol Springer US 2018;11:1386–97.

Patnala R, Arumugam TV, Gupta N, Dheen ST. HDAC inhibitor sodium butyrate-mediated epigenetic regulation enhances the neuroprotective function of microglia during ischemic stroke. Mol Neurobiol Mol Neurobiol 2017;54:6391–411.

Wang P, Zhang Y, Gong Y, Yang R, Chen Z, Hu W, et al. Sodium butyrate triggers a functional elongation of microglial process via Akt-small RhoGTPase activation and HDACs inhibition. Neurobiol Dis Elsevier 2018;111:12–25.

Yamawaki Y, Yoshioka N, Nozaki K, Ito H, Oda K, Harada K, et al. Sodium butyrate abolishes lipopolysaccharide-induced depression-like behaviors and hippocampal microglial activation in mice. Brain Res Elsevier BV 2018;1680:13–38.

Soliman ML, Puig KL, Combs CK, Rosenberger TA. Acetate reduces microglia inflammatory signaling in vitro. J Neurochem 2012;123:555–67.

Soliman ML, Combs CK, Rosenberger TA. Modulation of inflammatory cytokines and mitogen-activated protein kinases by acetate in primary astrocytes. J Neuroimmune Pharmacol 2013;8:287–300.

Reddy DS, Wu X, Golub VM, Dashwood WM, Dashwood RH. Measuring histone deacetylase inhibition in the brain. Curr Protoc Pharmacol 2018;81:1–14.

Frost G, Sleeth ML, Sahuri Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun Nature Publishing Group 2014;5:1–11.

Oleskin AV, Shenderov BA. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb Ecol Heal Dis 2016;27:1–13.

Reigstad CS, Salmonson CE, Rainey JF, Szurszewski JH, Linden DR, Sonnenburg JL, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 2015;29:1395–403.

Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell Elsevier 2015;161:264–76.

Nankova BB, Agarwal R, MacFabe DF, La Gamma EF. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells-Possible relevance to autism spectrum disorders. PLoS One 2014;9:1–16.

Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol 2014;28:1221–38.

Mohle L, Mattei D, Heimesaat MM, Bereswill S, Fischer A, Alutis M, et al. Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep 2016;15:1945–56.

Frohlich EE, Farzi A, Mayerhofer R, Reichmann F, Jacan A, Wagner B, et al. Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun Elsevier Inc 2016;56:140–55.

Varela RB, Valvassori SS, Lopes Borges J, Mariot E, Dal Pont GC, Amboni RT, et al. Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF, NGF and GDNF levels in brain of Wistar rats. J Psychiatr Res 2015;61:114–21.

Intlekofer KA, Berchtold NC, Malvaez M, Carlos AJ, McQuown SC, Cunningham MJ, et al. Exercise and sodium butyrate transform a subthreshold learning event into long-term memory via a brain-derived neurotrophic factor-dependent mechanism. Neuropsychopharmacol Nat Publishing Group 2013;38:2027–34.

Barichello T, Generoso JS, Simoes LR, Faller CJ, Ceretta RA, Petronilho F, et al. Sodium butyrate prevents memory impairment by re-establishing BDNF and GDNF expression in experimental pneumococcal meningitis. Mol Neurobiol 2015;52:734–40.

Kim HJ, Leeds P, Chuang DM. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem 2009;110:1226–40.

Yoo DY, Kim W, Nam SM, Kim DW, Chung JY, Choi SY, et al. Synergistic effects of sodium butyrate, a histone deacetylase inhibitor, on increase of neurogenesis induced by pyridoxine and increase of neural proliferation in the mouse dentate gyrus. Neurochem Res 2011;36:1850–7.

Wei Y Bin, Melas PA, Wegener G, Mathe AA, Lavebratt C. Antidepressant-like effect of sodium butyrate is associated with an increase in tet1 and in 5-hydroxymethylation levels in the BDNF gene. Int J Neuropsychopharmacol 2015;18:1–10.

Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 2004;279:40545–59.

Yang LL, Millischer V, Rodin S, MacFabe DF, Villaescusa JC, Lavebratt C. Enteric short-chain fatty acids promote proliferation of human neural progenitor cells. J Neurochem 2020;154:635–46.

Torres Fuentes C, Golubeva AV, Zhdanov AV, Wallace S, Arboleya S, Papkovsky DB, et al. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB J 2019;33:13546–59.

Published

01-05-2021

How to Cite

RENAMASTIKA, S. N., D. R. WAHYUNINGRUM, V. A. PUTRI, and R. AISY. “PREBIOTICS FOR ACUTE ISCHEMIC STROKE”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 13, no. 5, May 2021, pp. 1-10, doi:10.22159/ijpps.2021v13i5.41110.

Issue

Section

Review Article(s)