LARVICIDAL ACTIVITY OF RIPE AND UNRIPE FRUIT PEEL OF MUSA PARADISIACA L. AGAINST THE MALARIA VECTOR ANOPHELES STEPHENSI
DOI:
https://doi.org/10.22159/ijpps.2022v14i2.43276Keywords:
Larvicidal activity, Musa paradisiaca, Anopheles stephensi, Malarial vectorAbstract
Objective: To evaluate the larvicidal activity of the ripe and unripe fruit peel of Musa paradisiaca against the larvae of the malaria vector, Anopheles stephensi. There are no published data on the effect of these Musa paradisiaca fruit peel on this mosquito, primarily responsible for indigenous malaria.
Methods: The petroleum ether, ethyl acetate, and distilled water extracts of the ripe and unripe peel of Musa paradisiaca were tested against the fourth instar larvae of Anopheles stephensi. Larvicidal bioassay followed the standard WHO protocol with slight modifications.
Results: The highest larval mortality was found in ethyl acetate ripe peel extracts. The LC50 values of Musa paradisiaca ripe fruit peel extracts of petroleum ether and ethyl acetate against Anopheles stephensi were 3.21, 2.55 mg/ml, while those of unripe fruit peel extracts were 59.82, 48.08 mg/ml, respectively. Distilled water extract showed 14.588 mg/ml for ripe fruit peel and 14.93 mg/ml of unripe fruit peel. The LC90 values of Musa paradisiaca ripe fruit peel extracts of petroleum ether and ethyl acetate against Anopheles stephensi were 4.8, 4.19 mg/ml, while those of unripe fruit peel extracts were 161.1, 122.22 mg/ml, respectively.
Conclusion: Musa paradisiaca fruit peels extracts showed promising larvicidal activity. Ripe fruit peels of Musa paradisiaca, which is a waste material, can be exploited as an ideal eco-friendly larvicide, which could be used as an alternative for synthetic pesticides.
Downloads
References
WHO. Report of the WHO Informal Consultation on the evaluation and testing of insecticides. Geneva, Switzerland: World Health Organization; 1996.
Benelli G, Duggan MF. Management of arthropod vector data- Social and ecological dynamics facing the One Health perspective. Acta Trop. 2018;182:80-91. doi: 10.1016/j.actatropica.2018.02.015, PMID 29454734.
Ghosh A, Chowdhury N, Chandra G. Plant extracts as potential mosquito larvicides. Indian J Med Res. 2012;135(5):581-98. PMID 22771587.
Mukadam M. Larvicidal activity of some plant extracts against mosquitoes. Int J Trend Res. 2010;4(1):22-4.
Mittal PK, Subbarao SK. Prospectus of using herbal products in mosquito control. ICMR Bull. 2003;33:1-10.
Carvalho DO, Capurro ML. Genetic control of malaria and dengue. 4th ed. Cambridge: Academic Press; 2016. p. 409-22.
Kiszewski A, Mellinger A, Spielman A, Malaney P, Sachs SE, Sachs J. A global index representing the stability of malaria transmission. Am J Trop Med Hyg. 2004;70(5):486-98. doi: 10.4269/ajtmh.2004.70.486, PMID 15155980.
Dean M. Lymphatic filariasis, the quest to eliminate, Bulletin a 4000 y Old Disease. Publishing Company, Hollis N. H; 2001.
Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, Gething PW, Elyazar IR, Kabaria CW, Harbach RE, Hay SI. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic precis. Parasit Vectors. 2011;4:89. doi: 10.1186/1756-3305-4-89. PMID 21612587.
WHO. Vector alert: Anopheles stephensi invasion and spread: the Horn of Africa, the republic of Sudan and surrounding geographical areas, and Sri Lanka: information note. Geneva, Switzerland: World Health Organization; 2019.
Govindarajan M. Larvicidal efficacy of Ficus benghalensis L. plant leaf extracts against Culex quinquefasciatus Say, Aedes aegypti L. and anopheles stephensi L. (Diptera: Culicidae). Eur Rev Med Pharmacol Sci. 2010;14(2):107-11. PMID 20329569.
Tiwary M, Naik SN, Tewary DK, Mittal PK, Yadav S. Chemical composition and larvicidal activities of the essential oil of zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J Vector Borne Dis. 2007;44(3):198-204. PMID 17896622.
Bagavan A, Rahuman AA. Evaluation of the larvicidal activity of medicinal plant extracts against three mosquito vectors. Asian Pac J Trop Med. 2011;4(1):29-34. doi: 10.1016/S1995-7645(11)60027-8. PMID 21771411.
Cantrell CL, Pridgeon J, Fronczek FR, Becnel J. Structure-activity relationship studies on natural cudesmanolides from Inula helenium as toxicants against Aedes aegypti larvae and adults. Chem Biod. 2005;7:1681–97.
AV, NS, AU. Larvicidal activity of some medicinal plant extracts against malaria vector anopheles stephensi. Res J Parasitol. 2008;3(2):50-8. doi: 10.3923/jp.2008.50.58.
de Omena MC, Navarro DM, de Paula JE, Luna JS, Ferreira de Lima MR, Sant’Ana AE. Larvicidal activities against Aedes aegypti of some Brazilian medicinal plants. Bioresour Technol. 2007;98(13):2549-56. doi: 10.1016/j.biortech.2006.09.040, PMID 17137781.
WHO. Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. Geneva, Switzerland: World Health Organization; 1981.
Singha S, Chandra G. Mosquito larvicidal activity of some common spices and vegetable waste on Culex quinquefasciatus and Anopheles stephensi. Asian Pac J Trop Med. 2011;4(4):288-93. doi: 10.1016/S1995-7645(11)60088-6, PMID 21771472.
Kabaru JM, Gichia L. Insecticidal activity of extracts derived from different parts of the mangrove tree Rhizophora mucronata (Rhizophoraceae) Lam. against three arthropods. Afr J Sci Technol. 2001;2(2):44-9. doi: 10.4314/ajst.v2i2.44668.
Sun L, Dong H, Guo C, Qian J, Sun J, Ma L, Zhu C. Larvicidal activity of extracts of Ginkgo biloba exocarp for three different strains of Culex pipiens pallens. J Med Entomol. 2006;43(2):258-61. doi: 10.1603/0022-2585(2006)043[0258:laoeog]2.0.co;2, PMID 16619608.
Arizo MA M. Ripe banana peel wastes for a mosquito-free environment. Int J Waste Resour. 2018;8:2252-3.
Rathy MC, Sajith U, Harilal CC. Larvicidal efficacy of medicinal plant extracts against the vector mosquito Aedes albopictus. Int J Mosq Res. 2015;2(2):80-2.
Ali MYS, Ravikumar S, Beula JM. Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Asian Pac J Trop Dis. 2013;3(3):196-201. doi: 10.1016/S2222-1808(13)60040-7.
Patil SV, Patil CD, Salunkhe RB, Salunke BK. Larvicidal activities of six plants extracts against two mosquito species, Aedes aegypti and Anopheles stephensi. Trop Biomed. 2010;27(3):360-5. PMID 21399575.
Bagavan A, Rahuman AA. Evaluation of the larvicidal activity of medicinal plant extracts against three mosquito vectors. Asian Pac J Trop Med. 2011;4(1):29-34. doi: 10.1016/S1995-7645(11)60027-8, PMID 21771411.
Murugan K, Mahesh Kumar PM, Kovendan K, Amerasan D, Subrmaniam J, Hwang JS. Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2012;111(4):1757-69. doi: 10.1007/s00436-012-3021-8, PMID 22797605.
Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar PM. Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitol Res. 2012;111(6):2241-51. doi: 10.1007/s00436-012-3073-9, PMID 22903417.
Kovendan K, Murugan K, Shanthakumar SP, Vincent S, Hwang JS. Larvicidal activity of Morinda citrifolia L.(Noni)(Family: Rubiaceae) leaf extract against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. Parasitol Res. 2012;111(4):1481-90. doi: 10.1007/s00436-012-2984-9, PMID 22740293.
Govindarajan M, Sivakumar R. Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae). Parasitol Res. 2014;113(4):1435-49. doi: 10.1007/s00436-014-3784-1, PMID 24488078.
Published
How to Cite
Issue
Section
Copyright (c) 2022 MANJU MADHAVAN, SHOYMOL JOY
This work is licensed under a Creative Commons Attribution 4.0 International License.