ACUTE TOXICITY STUDY AND THERAPEUTIC ACTIVITY OF MODIFIED ARJUNARISHTA ON ISOPROTERENOL-INDUCED MYOCARDIAL INFARCTION IN RATS

Authors

  • B. SANTHOSHKUMAR Department of Biochemistry, Regenix Superspeciality laboratories (Affiliated to University of Madras) https://orcid.org/0000-0002-9852-8238
  • MANICKAM DIWAKAR Department of Biochemistry, Regenix Superspeciality laboratories (Affiliated to University of Madras)
  • SHYAMA SUBRAMANIAM Consultant, Lab Services, Apollo Hospitals, Chennai, Tamilnadu, India
  • SAMU SUBRAMANIAM Head of the Department, Department of Biochemistry, Regenix Super Speciality Laboratories, Chennai, Tamilnadu, India

DOI:

https://doi.org/10.22159/ijpps.2022v14i5.43797

Keywords:

Hormone sensitive lipase, Ionotropic effect, Cardiac remodelling, Proinflammatory cytokine

Abstract

Objective: Ayurvedic formulation derived phytomedicine could bring a specific remedy against myocardial infarction (MI) without any side effects. Arjunarishta is a cardio tonic that nourishes and strengthens the myocardial muscle and promotes cardiac function. The preparation of Arjunarishta is modified and it does not involve fermentation. So it is alcohol-free and safe to all age groups. The study of acute toxicity and therapeutic activity of Modified Arjunarishta (MA) in isoproterenol (IPN) induced MI in rats was conducted to bring scientific evidence.

Methods: Acute toxicity study: Mice are divided into three groups. Group I-control group; Group II and group III were test groups and they received an oral dose of 1000 mg/kg and 2000 mg/kg of MA, respectively. The experimental mice were observed for behaviour changes and clinical signs. Their body weight was also recorded. At the end of the experiment, blood sample was collected and glucose, liver function test (LFT), renal function test (RFT) and haematology parameters were analysed. Then they also subjected to gross pathological examination of all the major internal organs. Therapeutic study: Rats were divided into six groups. Group 1-normal control; Group 2 (induced)-IPN 85 mg/kg for the first two days; Group 3 (MA low dose)-received IPN as per group 2 followed by MA 200 mg/kg from the 3rd day to the end of the experiment; Group 4 (MA medium dose)-400 mg/kg; Group 5 (MA high dose)-600 mg/kg; Group 6 (Standard)-IPN as per group 2 followed by Arjunarishta 2 ml/kg body weight from the 3rd day to the end of the experiment. The collected serum sample was used for the estimation of myocardium-expressed proinflammatory cytokines. Heart tissue was homogenized for the estimation of calcium and lipid profile.

Results: Acute toxicity: There were no signs of toxicity and no significant change in body weight. The value of glucose, RFT, LFT and haematological parameters are remained normal. Histopathological report showed normal architecture. Therapeutic activity: In the heart samples, significantly (p<0.001) increased cholesterol, Triglyceride (TGL), Free Fatty acids (FFA) and calcium in IPN induced groups was noted. They are all significantly (p<0.001) decreased in MA administrated groups of three different groups. In serum sample, a significantly (p<0.001) increased cytokines of Tumor necrosis factor α (TNFα), Interlukins (IL-6, IL-1α and IL-1β) in IPN induced rats was recorded were as they get significantly (p<0.001) decreased in MA administrated groups of three different doses.

Conclusion: The results obtained from the acute toxicity experiment concluded that MA was found to be safe for oral administration. The therapeutic experiment results clearly emphasize the beneficial action of MA against IPN induced MI in rats.

Downloads

Download data is not yet available.

References

Dreyer RP, Tavella R, Curtis JP, Wang Y, Pauspathy S, Messenger J, Rumsfeld JS, Maddox TM, Krumholz HM, Spertus JA, Beltrame JF. Myocardial infarction with non-obstructive coronary arteries as compared with myocardial infarction and obstructive coronary disease: outcomes in a medicare population. Eur Heart J. 2020;41(7):870-8. doi: 10.1093/eurheartj/ehz403, PMID 31222249.

Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD, Mickley H, Crea F, Van de Werf F, Bucciarelli-Ducci C, Katus HA, Pinto FJ, Antman EM, Hamm CW, De Caterina R, Januzzi JL, Apple FS, Alonso Garcia MA, Underwood SR, Canty JM, Lyon AR, Devereaux PJ, Zamorano JL, Lindahl B, Weintraub WS, Newby LK, Virmani R, Vranckx P, Cutlip D, Gibbons RJ, Smith SC, Atar D, Luepker RV, Robertson RM, Bonow RO, Steg PG, O’Gara PT, Fox KAA. Fourth universal definition of myocardial infarction. Kardiol Pol. 2018;76(10):1383-415. doi: 10.5603/KP.2018.0203. PMID 30338834.

Rona G, Chappel CI, Balazs T, Gaudry R. An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. AMA Arch Pathol. 1959;67(4):443-55. PMID 13636626.

Aman U, Vaibhav P, Balaraman R. Tomato lycopene attenuates myocardial infarction induced by isoproterenol: electrocardiographic, biochemical and anti-apoptotic study. Asian Pac J Trop Biomed. 2012;2(5):345-51. doi: 10.1016/S2221-1691(12)60054-9, PMID 23569928.

Goldstein JL, Brown MS. Progress in understanding the LDL receptor and HMG-CoA reductase, two membrane proteins that regulate the plasma cholesterol. J Lipid Res. 1984;25(13):1450-61. doi: 10.1016/S0022-2275(20)34418-7, PMID 6397553.

Fleckenstein A. History of calcium antagonists. Circ Res. 1983;52(2 Pt 2):I3-16. PMID 6339106.

Paulus WJ. Cytokines and heart failure. Heart Fail Monit. 2000;1(2):50-6. PMID 12634874.

Pal SK, Shukla Y. Herbal medicine: current status and the future. Asian Pac J Cancer Prev. 2003;4(4):281-8. PMID 14728584.

Tang C, Wang X, Qin LQ, Dong JY. Mediterranean diet and mortality in people with cardiovascular disease: A meta-analysis of prospective cohort studies. Nutrients. 2021;13(8):2623. doi: 10.3390/nu13082623, PMID 34444786.

Santhosh Kumar B, Diwakar M. Sri Kamatchi Priya R, Shyama S, Subramaniam S. GC-Ms Anal ayurvedic med “modified arjunarishta”. Int J Curr Res Chem Pharm Sci. 2017;4(3):46-50.

Malloy HT, Evelyn KA. The determination of bilirubin with the photoelectric colorimeter. J Biol Chem. 1937;119(2):481-90. doi: 10.1016/S0021-9258(18)74392-5.

Gurr E. Staining animal tissues: practical and theoretical. London: Leonard Hill; 1962.

Rajadurai M, Prince PS. Preventive effect of naringin on isoproterenol-induced cardiotoxicity in wistar rats: an in vivo and in vitro study. Toxicology. 2007;232(3):216-25. doi: 10.1016/j.tox.2007.01.006, PMID 17289242.

Nugraheni K, Saputri FC. The effect of secang extract (Caesalpinia Sappan Linn) on the weight and histology appearance of white male Rats’ Hearts induced by isoproterenol. Int J App Pharm. 2017;9:59-62. doi: 10.22159/ijap.2017.v9s1.35_41.

Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497-509. doi: 10.1016/S0021-9258(18)64849-5, PMID 13428781.

Parekh AC, Jung DH. Cholesterol determination with ferric acetate-uranium acetate and sulfuric acid-ferrous sulfate reagents. Anal Chem. 1970;42(12):1423-7. doi: 10.1021/ac60294a044.

Rice EW, Epstein MB, Witter RF, Platt HA. Triglycerides (’neutral fat’) in serum. Standard Methods of Clinical Chemistry. 1970;6:215-22. doi: 10.1016/B978-0-12-609106-9.50027-0.

Hron WT, Menahan LA. A sensitive method for the determination of free fatty acids in plasma. J Lipid Res. 1981;22(2):377-81. doi: 10.1016/S0022-2275(20)35381-5, PMID 7240964.

Bartlett GR. Colorimetric assay methods for free and phosphorylated glyceric acids. J Biol Chem. 1959;234(3):469-71. doi: 10.1016/S0021-9258(18)70227-5, PMID 13641242.

Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925;66(2):375-400. doi: 10.1016/S0021-9258(18)84756-1.

Panda VS, N SR. Evaluation of the cardioprotective activity of Ginkgo biloba and ocimum sanctum in rodents. Altern Med Rev. 2009;14(2):161-71. PMID 19594225.

Hooper L, Martin N, Abdelhamid A, Davey Smith G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev. doi: 10.1002/14651858.CD011737.

Gunjal MA, Shah AS, Wakade AS, Juvekar AR. Protective effect of aqueous extract of moringa oleifera Lam. stem bark on serum lipids, marker enzymes and heart antioxidants parameters in isoproterenol-induced cardiotoxicity in wistar rats. Indian J Nat Prod Resour. 2010;1(4):485-92.

Barman NR, Nandy S, Datta R, Kar PK. Cardioprotective effect of ethanolic extract of Urtica parviflora Roxb. against isoproterenol induced myocardial infarction in rats. Indian J Pharmacol. 2013;45(5):513-6. doi: 10.4103/0253-7613.117782, PMID 24130389.

Whitmer JT, Idell-Wenger JA, Rovetto MJ, Neely JR. Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem. 1978;253(12):4305-9. doi: 10.1016/S0021-9258(17)34720-8, PMID 659417.

Mehra R, Aanchal KS, Kalsi SP, Gautam SP. Hypertension in relation to Immune system and way of life along with treatment. Int J Curr Pharm Sci. 2021;13(6):1-10. doi: 10.22159/ijcpr.2021v13i6.1907.

Morimoto SI, Sekiguchi M, Hiramitsu S, Uemura A, Nishikawa T, Hishida H. Contribution of cardiac muscle cell disorganization to the clinical features of hypertrophic cardiomyopathy. Heart Vessels. 2000;15(4):149-58. doi: 10.1007/s003800070016, PMID 11471653.

Thewles A, Parslow RA, Coleman R. Effect of diosgenin on biliary cholesterol transport in the rat. Biochem J. 1993;291(3):793-8. doi: 10.1042/bj2910793, PMID 8387778.

Nibbering CP, Groen AK, Ottenhoff R, Brouwers JF, vanBerge-Henegouwen GP, van Erpecum KJ. Regulation of biliary cholesterol secretion is independent of hepatocyte canalicular membrane lipid composition: a study in the diosgenin-fed rat model. J Hepatol. 2001;35(2):164-9. doi: 10.1016/s0168-8278(01)00125-8, PMID 11580137.

Wang H, Paulsen MJ, Hironaka CE, Shin HS, Farry JM, Thakore AD, Jung J, Lucian HJ, Eskandari A, Anilkumar S, Wu MA, Cabatu MC, Steele AN, Stapleton LM, Zhu Y, Woo YJ. Natural heart regeneration in a neonatal rat myocardial infarction model. Cells. 2020;9(1):229. doi: 10.3390/cells9010229, PMID 31963369.

Doss Va, Manju Vidhya Sakthikumar, Dharaniyambigai Kuberapandian. Evaluation of the anti-hypertrophic potential of piper betle in isoproterenol-induced cardiac hypertrophic rat models. Asian J Pharm Clin Res. 2019;12(7):286-90. doi: 10.22159/ajpcr.2019.v12i7.33588.

Akpanabiatu MI, Umoh IB, Udosen EO, Udoh AE, Edet EE. Rat serum electrolytes, lipid profile and cardiovascular activity on Nauclea latifolia leaf extract administration. Indian J Clin Biochem. 2005;20(2):29-34. doi: 10.1007/BF02867397, PMID 23105530.

Tian M, Yuan YC, Li JY, Gionfriddo MR, Huang RC. Tumor necrosis factor-α and its role as a mediator in myocardial infarction: a brief review. Chronic Diseases and Translational Medicine. 2015;1(1):18-26. doi: 10.1016/j.cdtm.2015.02.002.

Puhakka M, Magga J, Hietakorpi S, Penttilä I, Uusimaa P, Risteli J, Peuhkurinen K. Interleukin-6 and tumor necrosis factor alpha in relation to myocardial infarct size and collagen formation. J Card Fail. 2003;9(4):325-32. doi: 10.1054/jcaf.2003.38, PMID 13680554.

Chen Y, Zhang Q, Liao YH, Cao Z, Du YM, Xia JD, Yang H, Chen ZJ. Effect of tumor necrosis factor-α on neutralization of ventricular fibrillation in rats with acute myocardial infarction. Mediators Inflamm. 2011;2011:565238. doi: 10.1155/2011/565238, PMID 21584281.

A SR, Sethumadhavan R, Thiagarajan P. Impact of deleterious non-synonymous single nucleotide polymorphisms of cytokine genes on non-classical hydrogen bonds predisposing to cardiovascular disease: an in silico approach. Asian J Pharm Clin Res. 2017;10(11):214-9. doi: 10.22159/ ajpcr.2017.v10i11.19531.

Nagaraju CK, Dries E, Popovic N, Singh AA, Haemers P, Roderick HL, Claus P, Sipido KR, Driesen RB. Global fibroblast activation throughout the left ventricle but localized fibrosis after myocardial infarction. Sci Rep. 2017;7(1):10801. doi: 10.1038/s41598-017-09790-1, PMID 28883544.

Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, Hongo M, Noda T, Nakayama J, Sagara J, Taniguchi S, Ikeda U. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 2011;123(6):594-604. doi: 10.1161/Circulationaha.110.982777, PMID 21282498.

Pomerantz BJ, Reznikov LL, Harken AH, Dinarello CA. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1β. Proc Natl Acad Sci USA. 2001;98(5):2871-6. doi: 10.1073/pnas.041611398, PMID 11226333.

Turner NA, Das A, Warburton P, O’Regan DJ, Ball SG, Porter KE. Interleukin-1α stimulates proinflammatory cytokine expression in human cardiac myofibroblasts. Am J Physiol Heart Circ Physiol. 2009;297(3):H1117-27. doi: 10.1152/ajpheart.00372.2009, PMID 19648252.

Van Tassell BW, Toldo S, Mezzaroma E, Abbate A. Targeting interleukin-1 in heart disease. Circulation. 2013;128(17):1910-23. doi: 10.1161/circulationaha.113.003199, PMID 24146121.

Lugrin J, Parapanov R, Rosenblatt Velin N, Rignault Clerc S, Feihl F, Waeber B, Müller O, Vergely C, Zeller M, Tardivel A, Schneider P, Pacher P, Liaudet L. Cutting edge: il-1α is a crucial danger signal triggering acute myocardial inflammation during myocardial infarction. J Immunol. 2015;194(2):499-503. doi: 10.4049/jimmunol.1401948, PMID 25505286.

Frangogiannis NG. Interleukin-1 in cardiac injury, repair, and remodeling: pathophysiologic and translational concepts. Discoveries (Craiova). 2015;3(1). doi: 10.15190/d.2015.33, PMID 26273700.

Liu K, Chen H, You QS, Ye Q, Wang F, Wang S, Zhang SL, Yu KJ, Lu Q. Curcumin attenuates myocardial ischemia-reperfusion injury. Oncotarget. 2017;8(67):112051-9. doi: 10.18632/oncotarget.23002, PMID 29340110.

Published

01-05-2022

How to Cite

SANTHOSHKUMAR, B., M. DIWAKAR, S. SUBRAMANIAM, and S. SUBRAMANIAM. “ACUTE TOXICITY STUDY AND THERAPEUTIC ACTIVITY OF MODIFIED ARJUNARISHTA ON ISOPROTERENOL-INDUCED MYOCARDIAL INFARCTION IN RATS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 14, no. 5, May 2022, pp. 12-21, doi:10.22159/ijpps.2022v14i5.43797.

Issue

Section

Original Article(s)

Most read articles by the same author(s)