• Amal Youssef M. Abdel Reheem Misr University for Science and Technology


Intranasal delivery, Verapamil HCl, Inserts, Lyophilization


Objective: The aim of this study was to investigate the ability of polymers to form verapamil HCl nasal inserts.

Methods: Theinserts were prepared by lyophilization technique using bioadhesive polymers as chitosan, sodium carboxymethyl cellulose, hydroxyl propyl methyl cellulose,sodium alginate and xanthan gum. The prepared inserts were characterized by different parameters as bioadhesion potential, wetting time, water uptake behavior, drug release and permeation.

Results: Verapamil HClnasal inserts prepared with 2% chitosan polymer showed a good bioadhesive, water uptake and release within 6 hrs properties as well as the highest drug contents and permeation within 8 hrs.

Conclusion: Nasal inserts could be a good alternative route to avoid the first pass metabolism of verapamil HCl.



Download data is not yet available.


Mistry A, Stolnik S, Illum L. Nanoparticles for direct-nose to-brain delivery of drugs. Int Pharm 2009;379:146-57.

Illum L. Nasal drug delivery-possibilities, problems and solutions. J Control Rel 2003;87:187-98.

Ugwoke MI, Agu RU, Verbeke N, Kinger R. Nasal mucoadhesivedrug delivery: Background, applications, trends and future perspectives. Adv Drug Deliv Rev 2005;57:1640-64.

Jadhav KR, Gambhire MN, Shaikh IM. Nasal drug delivery system-factors affecting and applications. Curr Drug Ther 2007;2:27-38.

Chugh Y, Kapoor P, Kapoor AK. Intranasal drug delivery: a novel approach. Indian J Otolaryngol Head Neck Surgery 2009;61(2):90–4.

Touitou E, Illum L. Nasal drug delivery. Drug Delivery Transl Res 2013;3(1):1–3.

Werner U, Damge C, Maincent P, Bodmeier R. Properties of in situ gelling nasal insert containing estradiol/methyl B-cyclodextrin. J Drug Del Sci Technol 2004;14(4):275-84.

Bertram U, Bodmeier R. Parameters affecting the drug release from in situ gelling nasal inserts. Eur J Pharm Biopharm 2006;63(3):310–9.

Zhao YH, Abraham MH, Le Hersy JA, Luscombe CN, Beck G, Sherborne B, et al. Rate-limited steps of human oral absorption and QSAR studies. Pharm Res 2002;19:1446-57.

Bertram U, Bernard MC, Haensler J, Maincent P, Bodmeier R. In situ gelling nasal inserts for influenza vaccine delivery. Drug Dev Ind Pharm 2010;36(5):581-93.

Bertram U, Bodmeier R. Effect of polymeric molecular weight and polymer blends on the properties of rapidly gelling nasal inserts. Drug Dev Ind Pharm 2012;38(6):659-69.

Farid RM, Etman MA, Nada AH, Ebian AE. Formulation and in vitro evaluation of salbutamol sulphatein situ gelling nasal inserts. AAPS Pharm Sci Tech 2013;14(2):712-8.

Callenes C, Ceuleemans J, Ludwing A, Foreman P, Remon JO. Rheological studyon mucoadhesivity of some nasal powder formulations. Eur J Pharm Biopharm 2003;55:323-8.

Luppi B, Bigucci F, Mercolini L, Musenga A, Sorrenti M, Catenacci L, et al. Novel mucoadhesive nasal inserts based on chitosan/hyaluronate polyelectrolyte complexes for peptide and protein delivery. J Pharm Pharmacol 2009;61(2):151-7.

Abdel Halim A. Formulation and evaluation of modified nasal delivery system of an anti-emetic drug: ondansetron. MD Thesis, faculty of pharmacy, Cairo University; 2013.

Abdel-Bar HM, Abdel-Reheem AY, Awad GA, Mortada ND. Optimized formulation of Vancomycinloaded thermoreversable hydrogel fortreatment of orthopedic infections. Int J Pharm Sci Res 2014;5(7):1-16.

Luppi B, Bigucci F, Mercolini L, Musenga A, Sorrenti M, Catenacci L, et al. Freeze-dried chitosan/pectin nasal inserts for antipsychotic drug delivery. Eur J Pharm Biopharm 2010;75:381-7.

Zhu W, Yu A, Wang W, Dong R, Wu J, Zhai G. Formulation design of microemulsion for dermal delivery of penciclovir. Int J Pharm 2008;360:184–90.

Dae-Duk K. Drug absorption studies: in situ, in vitro and insilicomodels, USA: Springer; 2007.

Peppas NA, Khare AR. Preparation, structure and diffusional behavior of hydrogel in controlled release. Adv Drug Delivery Rev 1993;11:1-35.

Bertram U, Bodmeier R. In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form. Eur J Pharm Sci 2006;27(1):62-71.

Lee JW, Park JH, Robinson JR. Bioadhesive-based dosage forms: the next generation. J Pharm Sci 2000;89(7):850-66.

Werner U, Bodmeire R. Development of a simplein vitro bioadhesiontest for fast disintegrating nasal inserts. Arch Pharm 2002;335:124.

Luppi B, Bigucci F, Abruzzo A, Corace G, Cerchiara T, Zecchi V. Freeze-dried chitosan/pectin nasal inserts for antipsychotic drug delivery. Eur J Pharm Biopharm 2010;75(3):381-7.

Nakamura F, Ohta R, Machida Y, Nagaji T. In vitro and in vivo nasal mucoadhesion of some water-soluble polymers. Int J Pharm 1996;134:173-81.

Berger J, Reist M, Mayer JM, Feit O, Peppas NA, Gurmy R. Structural and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 2004;57:35-52.

Tuker S, Onur E, Ozer Y. Nasal route and drug delivery system. Pharm World Sci 2004;26:137-42.

Quraishi MS, Jones NS, Mason JD. The nasal delivery of drugs. Clin Otolaryngol Allied Sci 1997;22(4):289-301.

Abdel Mouez M, Zaki NM, Mansour S, Geneidi AS. Bioavailability enhancement of verapamil HCl via intranasal chitosan. Eur J Pharm Sci 2014;51:59-66.



How to Cite

M. Abdel Reheem, A. Y. “FREEZE-DRIED POLYMERIC NASAL INSERTS FOR ANTIHYPERTENSIVE DRUG DELIVERY”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, no. 3, Mar. 2015, pp. 269-73,



Original Article(s)