BERBERINE: A POTENT ADJUVANT IN PSORIASIS NANOTECHNOLOGY

Authors

  • AMIT CHAUDHARY School of Pharmacy, Abhilashi University, Mandi H. P.
  • SWATI MITTAL School of Pharmacy, Abhilashi University, Mandi H. P., Department of Pharmaceutics, Sanskar College of Pharmacy and Research, NH-24 Ghaziabad https://orcid.org/0000-0002-9829-9068

DOI:

https://doi.org/10.22159/ijpps.2022v14i5.43966

Keywords:

Psoriasis, Berberine, Nanotechnology

Abstract

Psoriasis is a multi-factorial disease represented by complex atomic scenes and cellular pathways that lead to abnormal cell development. The normal mixture has a clear target and limited cytotoxicity; in this sense, it can support the further development of new therapies for the treatment of this flexible disease. Berberine is an individual of the original berberine alkaloid family. It mainly exists in the roots, trunks and barks of various trees and has anti-psoriatic activity. In any case, according to the berberine organization, limited bioavailability and low assimilation rate are the two main obstacles, because only 0.5% of the ingested berberine is consumed in the small digestive tract, and this rate is when it enters the intestines. It is further reduced to 0.35%. Nano-based details are seen as the best way to increase the assimilation rate because substances accumulated at the nano-level can be quickly absorbed in the intestine. Useful methods based on nanotechnology have been developed to solve these problems to ultimately achieve greater sufficiency in the treatment of various diseases. The investigation introduced and essentially examined the anti-proliferative effects of berberine and nanotechnology-based repair technology for nano-scale transportation of berberine. Finally, we will thoroughly analyze and examine the current methods and promising viewpoints of the recent transportation of this alkaloid.

Downloads

Download data is not yet available.

References

Ahmad Farooqi AA, Fayyaz S, Silva AS, Sureda A, Nabavi SF, Mocan A, Nabavi SM, Bishayee A. Oleuropein and cancer chemoprevention: the link is hot. Molecules. 2017;22(5):705-20. doi: 10.3390/molecules22050705, PMID 28468276.

Zhao Y, Hu X, Zuo X, Wang M. Chemopreventive effects of some popular phytochemicals on human colon cancer: a review. Food Funct. 2018;9(9):4548-68. doi: 10.1039/c8fo00850g, PMID 30118121.

Tiloke C, Anand K, Gengan RM, Chuturgoon AA. Moringa oleifera and their phytonanoparticles: potential antiproliferative agents against cancer. Biomed Pharmacother. 2018;108:457-66. doi: 10.1016/j.biopha.2018.09.060. PMID 30241049.

Hussain SS, Kumar AP, Ghosh R. Food-based natural products for cancer management: Is the whole greater than the sum of the parts? Semin Cancer Biol. 2016;40-41:233-46. doi: 10.1016/j.semcancer.2016.06.002. PMID 27397504.

Manach C, Hubert J, Llorach R, Scalbert A. The complex links between dietary phytochemicals and human health deciphered by metabolomics. Mol Nutr Food Res. 2009;53(10):1303-15. doi: 10.1002/mnfr.200800516, PMID 19764066.

Ali I, Lone MN, Al-Othman ZA, Al-Warthan A, Sanagi MM. Heterocyclic scaffolds: centrality in anticancer drug development. Curr Drug Targets. 2015;16(7):711-34. doi: 10.2174/1389450116666150309115922, PMID 25751009.

Ali I. Nano anti-cancer drugs: pros and cons and future perspectives. Curr Cancer Drug Targets. 2011;11(2):131-4. doi: 10.2174/156800911794328457, PMID 21062238.

Ali I, Lone MN, Aboul-Enein HY. Imidazoles as potential anticancer agents. Med Chem Comm. 2017;8(9):1742-73. doi: 10.1039/c7md00067g, PMID 30108886.

Ali I, Wani WA, Saleem K, Haque A. Platinum compounds: a hope for future cancer chemotherapy. Anti Cancer Agents Med Chem. 2013;13(2):296-306. doi: 10.2174/ 1871520611313020016, PMID 22583420.

Sultan M, Stecher G, Stoggl WM, Bakry R, Zaborski P, Huck CW, El Kousy NM, Bonn GK. Sample pretreatment and determination of non-steroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical formulations and biological samples (blood, plasma, erythrocytes) by HPLC-UV-MS and micro-HPLC. Curr Med Chem. 2005;12(5):573-88. doi: 10.2174/0929867310504050573, PMID 15777213.

Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, Wang S, Wu J, Wang Y, Li Z, Liu J, Jiang JD. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med. 2004;10(12):1344-51. doi: 10.1038/nm1135, PMID 15531889.

Lee B, Sur B, Shim I, Lee H, Hahm DH. Phellodendron amurense and Its major alkaloid compound, berberine ameliorates scopolamine-induced neuronal impairment and memory dysfunction in rats. Korean J Physiol Pharmacol. 2012;16(2):79-89. doi: 10.4196/kjpp.2012.16.2.79, PMID 22563252.

Imenshahidi M, Hosseinzadeh H. Berberis vulgaris and berberine: an update review. Phytother Res. 2016;30(11):1745-64. doi: 10.1002/ptr.5693, PMID 27528198.

Grycova L, Dostal J, Marek R. Quaternary protoberberine alkaloids. Phytochemistry. 2007;68(2):150-75. doi: 10.1016/j.phytochem.2006.10.004. PMID 17109902.

Fata A, Rakhshandeh H, Berenji F, Jalalian FA. Treatment of cutaneous leishmaniasis in murine model by alcoholic extract of Berberis vulgaris. Iran J Parasitol. 2006;1(1):39-42.

Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF, Gortzi O, Izadi M, Nabavi SM. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016;210:402-14. doi: 10.1016/ j.foodchem. 2016.04.111. PMID 27211664.

Belwal T, Bisht A, Devkota HP, Ullah H, Khan H, Pandey A, Bhatt ID, Echeverria J. Phytopharmacology and clinical updates of Berberis species against diabetes and other metabolic diseases. Front Pharmacol. 2020;11:41. doi: 10.3389/fphar.2020.00041, PMID 32132921.

Chae HW, Kim IW, Jin HE, Kim DD, Chung SJ, Shim CK. Effect of ion-pair formation with bile salts on the in vitro cellular transport of berberine. Arch Pharm Res. 2008;31(1):103-10. doi: 10.1007/s12272-008-1127-4, PMID 18277615.

Imenshahidi M, Hosseinzadeh H. Berberine and barberry (Berberis vulgaris): A clinical review. Phytother Res. 2019;33(3):504-23. doi: 10.1002/ptr.6252, PMID 30637820.

Liu D, Meng X, Wu D, Qiu Z, Luo H. A natural isoquinoline alkaloid with antitumor activity: studies of the biological activities of berberine. Front Pharmacol. 2019;10:9. doi: 10.3389/fphar.2019.00009, PMID 30837865.

Sun Y, Xun K, Wang Y, Chen X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs. 2009;20(9):757-69. doi: 10.1097/CAD.0b013e328330d95b, PMID 19704371.

Tillhon M, Guamán Ortiz LM, Lombardi P, Scovassi AI. Berberine: new perspectives for old remedies. Biochem Pharmacol. 2012;84(10):1260-7. doi: 10.1016/ j.bcp.2012.07.018. PMID 22842630.

Jantova S, Cipak L, Letasiova S. Berberine induces apoptosis through a mitochondrial/caspase pathway in human promonocytic U937 cells. Toxicol In Vitro. 2007;21(1):25-31. doi: 10.1016/j.tiv.2006.07.015. PMID 17011159.

Chen Q, Qin R, Fang Y, Li H. Berberine sensitizes human ovarian cancer cells to cisplatin through miR-93/PTEN/Akt signaling pathway. Cell Physiol Biochem. 2015;36(3):956-65. doi: 10.1159/000430270, PMID 26087719.

Ortiz LMG, Croce AL, Aredia F, Sapienza S, Fiorillo G, Syeda TM, Buzzetti F, Lombardi P, Scovassi AI. Effect of new berberine derivatives on colon cancer cells. Acta Biochim Biophys Sin. 2015;47(10):824-33. doi: 10.1093/abbs/gmv077, PMID: 26341980.

Tian Y, Zhao L, Wang Y, Zhang H, Xu D, Zhao X, Li Y, Li J. Berberine inhibits androgen synthesis by interaction with aldo-keto reductase 1C3 in 22Rv1 prostate cancer cells. Asian J Androl. 2016;18(4):607-12. doi: 10.4103/1008-682X.169997, PMID 26698234.

Wang J, Qi Q, Feng Z, Zhang X, Huang B, Chen A, Prestegarden L, Li X, Wang J. Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway. Oncotarget. 2016;7(41):66944-58. doi: 10.18632/oncotarget.11396, PMID 27557493.

Chen K, Li G, Geng F, Zhang Z, Li J, Yang M, Dong L, Gao F. Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K-Akt signaling in diabetic rats. Apoptosis. 2014;19(6):946-57. doi: 10.1007/s10495-014-0977-0, PMID 24664781.

Li L, Wang X, Sharvan R, Gao J, Qu S. Berberine could inhibit thyroid carcinoma cells by inducing mitochondrial apoptosis, G0/G1 cell cycle arrest and suppressing migration via PI3K-AKT and MAPK signaling pathways. Biomed Pharmacother. 2017;95:1225-31. doi: 10.1016/j.biopha.2017.09.010. PMID 28931215.

Loo YS, Madheswaran T, Rajendran R, Bose RJ. Encapsulation of berberine into liquid crystalline nanoparticles to enhance its solubility and anticancer activity in MCF7 human breast cancer cells. J Drug Deliv Sci Technol. 2020;57. doi: 10.1016/ j.jddst.2020.101756.

Lee KJ, An JH, Chun JR, Chung KH, Park WY, Shin JS, Kim DH, Bahk YY. In vitro analysis of the anti-cancer activity of mitoxantrone loaded on magnetic nanoparticles. J Biomed Nanotechnol. 2013;9(6):1071-5. doi: 10.1166/jbn.2013.1530, PMID 23858972.

Wang Z, Wang YS, Chang ZM, Li L, Zhang Y, Lu MM, Zheng X, Li M, Shao D, Li J, Chen L, Dong WF. Berberine-loaded Janus nanocarriers for magnetic field-enhanced therapy against hepatocellular carcinoma. Chem Biol Drug Des. 2017;89(3):464-9. doi: 10.1111/cbdd.12866, PMID 27618577.

Bhanumathi R, Manivannan M, Thangaraj R, Kannan S. Drug-carrying capacity and anticancer effect of the folic acid- and berberine-loaded silver nanomaterial to regulate the AKT-ERK pathway in breast cancer. ACS Omega. 2018;3(7):8317-28. doi: 10.1021/acsomega.7b01347, PMID 30087941.

Parhi P, Suklabaidya S, Kumar Sahoo S. Enhanced anti-metastatic and anti-tumorigenic efficacy of Berbamine loaded lipid nanoparticles in vivo. Sci Rep. 2017;7(1):5806. doi: 10.1038/s41598-017-05296-y. PMID 28724926.

Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, Jacks T, Anderson DG. Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 2011;12(1):39-50. doi: 10.1038/nrc3180, PMID 22193407.

Fu S, Xie Y, Tuo J, Wang Y, Zhu W, Wu S, Yan G, Hu H. Discovery of mitochondria-targeting berberine derivatives as the inhibitors of proliferation, invasion and migration against rat C6 and human U87 glioma cells. Chem Commun. 2015;6(1):164-73. doi: 10.1039/C4MD00264D.

Tuo J, Xie Y, Song J, Chen Y, Guo Q, Liu X, Ni X, Xu D, Huang H, Yin S, Zhu W, Wu J, Hu H. Development of a novel berberine-mediated mitochondria-targeting nano-platform for drug-resistant cancer therapy. J Mater Chem B. 2016;4(42):6856-64. doi: 10.1039/C6TB01730D, PMID 32263579.

Weissig V, Torchilin VP. Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv Drug Deliv Rev. 2001;49(1-2):127-49. doi: 10.1016/s0169-409x(01)00131-4, PMID 11377808.

Pereira GC, Branco AF, Matos JAC, Pereira SL, Parke D, Perkins EL, Serafim TL, Sardao VA, Santos MS, Moreno AJM, Holy J, Oliveira PJ. Mitochondrially targeted effects of berberine [Natural Yellow 18, 5,6-dihydro-9,10-dimethoxybenzo(g)-1,3-benzodioxolo(5,6-a) quinolizinium] on K1735-M2 mouse melanoma cells: comparison with direct effects on isolated mitochondrial fractions. J Pharmacol Exp Ther. 2007;323(2):636-49. doi: 10.1124/jpet.107.128017, PMID 17704354.

Abu-Salah KMA, Zourob MM, Mouffouk F, Alrokayan SA, Alaamery MA, Ansari AA. DNA-based nanobiosensors as an emerging platform for the detection of disease. Sensors (Basel). 2015;15(6):14539-68. doi: 10.3390/s150614539, PMID 26102488.

Ilkhani H, Hughes T, Li J, Zhong CJ, Hepel M. Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens Bioelectron. 2016;80:257-64. doi: 10.1016/j.bios.2016.01.068. PMID 26851584.

Ovadekova R, Jantova S, Letasiova S, Stepanek I, Labuda J. Nanostructured electrochemical DNA biosensors for detection of the effect of berberine on DNA from cancer cells. Anal Bioanal Chem. 2006;386(7-8):2055-62. doi: 10.1007/s00216-006-0830-6, PMID 17053918.

Wang N, Feng Y, Zhu M, Tsang CM, Man K, Tong Y, Tsao SW. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism. J Cell Biochem. 2010;111(6):1426-36. doi: 10.1002/jcb.22869, PMID 20830746.

Kim DY, Kim SH, Cheong HT, Ra CS, Rhee KJ, Jung BD. Berberine induces p53-dependent apoptosis through inhibition of DNA Methyltransferase3b in Hep3B cells. Korean J Clin Lab Sci. 2020;52(1):69-77. doi: 10.15324/kjcls.2020.52.1.69.

Zhao Q, Peng C, Zheng C, He XH, Huang W, Han B. Recent advances in characterizing natural products that regulate autophagy. Anti Cancer Agents Med Chem. 2019;19(18):2177-96. doi: 10.2174/1871520619666191015104458, PMID 31749434.

Dhall A, Self W. Cerium oxide nanoparticles: A brief review of their synthesis methods and biomedical applications. Antioxidants (Basel). 2018;7(8):97. doi: 10.3390/ antiox7080097, PMID 30042320.

Bagade A, Tumbigeremutt V, Pallavi G. Cardiovascular effects of berberine: a review of the literature. J Restorat Med. 2017;6(1):37-45. doi: 10.14200/jrm.2017.6.0100.

Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism. 2008;57(5):712-7. doi: 10.1016/j.metabol.2008.01.013. PMID 18442638.

Dong H, Wang N, Zhao L, Lu F. Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis. Evid Based Complement Alternat Med. 2012;2012:591654. doi: 10.1155/2012/591654, PMID 23118793.

Xu Z, Xu Y, Basuthakur P, Patra CR, Ramakrishna S, Liu Y, Thomas V, Nanda HS. Fibro-porous PLLA/gelatin composite membrane doped with cerium oxide nanoparticles as bioactive scaffolds for future angiogenesis. J Mater Chem B. 2020;8:9110-20. doi: 10.1039/D0TB01715A, PMID 32929440.

Zuo F, Nakamura N, Akao T, Hattori M. Pharmacokinetics of berberine and its main metabolites in conventional and pseudo-germ-free rats determined by liquid chromatography/ion trap mass spectrometry. Drug Metab Dispos. 2006;34(12):2064-72. doi: 10.1124/dmd.106.011361, PMID 16956957.

Mullauer FB, van Bloois L, Daalhuisen JB, Ten Brink MS, Storm G, Medema JP, Schiffelers RM, Kessler JH. Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anticancer Drugs. 2011;22(3):223-33. doi: 10.1097/ CAD.0b013e3283421035, PMID 21263311.

Iqbal MJ, Quisp C, Javed Z, Sadia H, Qadri QR, Raza S, Salehi B, Cruz-Martins N7, Mohamed ZA, Jaafaru MS1, Razis AFA, Sharifi-Rad J. Nanotechnology-based strategies for berberine delivery system in cancer treatment: pulling strings to keep berberine. Front Mol Biosci. 2021;7:624494. doi: 10.3389/ fmolb.2020.624494.

Maithani A, Parchai V, Kumar D. Quantitative estimation of berberine content of Berberis Asistica from a different altitude of garwal Himalaya. Asian J Pharm Clin Res. 2014;7(1):165-7.

Chakraborty R, Lobo R, Prabhu MM, Umakanth S, Chowdhury G, Mukhopadhyay AK, Ramamurthy T, Ballal M. Berberine hydrochloride could prove to be a promising bullet against clostridium difficile infection: a preliminary study from South India. Asian J Pharm Clin Res. 2017;10(12):419-24. doi: 10.22159/ajpcr.2017.v10i12.21932.

Published

01-05-2022

How to Cite

CHAUDHARY, A., and S. MITTAL. “BERBERINE: A POTENT ADJUVANT IN PSORIASIS NANOTECHNOLOGY”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 14, no. 5, May 2022, pp. 1-6, doi:10.22159/ijpps.2022v14i5.43966.

Issue

Section

Review Article(s)