A COMPUTATIONAL STUDY OF CIPROFLOXACIN METABOLITES AND SOME NATURAL COMPOUNDS AGAINST RESISTANT METHICILLIN STAPHYLOCOCCUS AUREUS (MRSA)
DOI:
https://doi.org/10.22159/ijpps.2022v14i8.44560Keywords:
Methicillin-resistant staphylococcus aureus (MRSA), Natural compounds, Ciprofloxacin (CIP), Rutin, Sulfociprofloxacin (Sulfo-CIP), 3UWZAbstract
Objective: In this paper, a computational study, including molecular docking, was accomplished for ciprofloxacin metabolites and some natural compounds, then a practical study of that compounds alone and in combination was applied against resistant methicillin STAPHYLOCOCCUS AUREUS (MRSA) isolates.
Methods: A docking software was used for molecular docking of the enzyme isomerase (3UWZ from protein data bank PDB) with ciprofloxacin (CIP) and its metabolites like sulfo-ciprofloxacin (Sulfo-CIP), oxo-ciprofloxacin, desethylene-ciprofloxacin, acetyl-ciprofloxacin, and natural compounds such as flavonoids (rutin, quercetin, hesperidin), phenols (thymol, gallic acid), phenolic acids (salicylic acid), terpenoids (menthol, eucalyptol) and coumarins (7-hydroxy coumarin). An antibacterial application for the highest binding energy of metabolites and natural compounds alone and in combination by using well diffusion method applied to ten of (MRSA) isolates.
Results: Docking results revealed that rutin, CIP, and Sulfo-CIP were the highest binding energy values of-106.76,-104.64, and-102.23 K/cal, respectively. The diameter of the inhibition zone pointed to the antibacterial activity against MRSA isolates, and it showed a range from 16-18, 18-22, and 18-19 mm in order. But the inhibition zone diameter in the combination of rutin with Sulfo-CIP ranged from 28 to 35 mm.
Conclusion: Metabolite Sulfo-CIP showed up high antibacterial activity close to CIP theoretically and in vitro; also, the relationship with natural compound rutin showed a synergistic effect.
Downloads
References
Yu W, Alexander D, MacKerell Jr. Computer-aided drug design methods. Methods Mol Biol. 2018 Jan 1;1520:185-6.
Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH. A critical assessment of docking programs and scoring functions. J Med Chem. 2006 Aug 13;49(20):5912-31. doi: 10.1021/jm050362n, PMID 17004707.
Wang J, Dokholyan NV. MedusaDock 2.0: efficient and accurate protein-ligand docking with constraints. J Chem Inf Model. 2019 Apr 4;59(6):2509-15. doi: 10.1021/acs.jcim.8b00905, PMID 30946779.
Lokesh R, Divya J, Suganya K, Venkatesh S, Jayarama R. Anti-methicillin resistant staphylococcus aureus potential of phytochemicals in Terminalia catappa and they’re proposed in silico mechanism of action. Asian J Pharm Clin. 2019 Aug 8;12(10):134-7.
Tiwari HK, Das AK, Sapkota D, Sivrajan K, Pahwa VK. Methicillin resistant staphylococcus aureus: prevalence and antibiogram in a tertiary care hospital in western Nepal. J Infect Dev Ctries. 2009 Oct 22;3(9):681-4. doi: 10.3855/jidc.86, PMID 19858569.
Nursanna IS, Muhammad H, Novi Y. Identification of chemical compounds and antibacterial activity of 96% ethanol extract from Moringa oleifera lam. leaves against MRSA (methicillin-resistant staphylococcus aureus). IJAP. 2021 Feb 10;13(2):111-4.
Bhat GK, Kumari J, Shenoy SM, Hegde A, MC, KV. Vancomycin intermediate and vancomycin-resistant staphylococcus aureus– mechanisms, clinical significance and detection. Asian J Pharm Clin Res. 2017 Mar 28;10(6):32-7. doi: 10.22159/ajpcr.2017.v10i6.15993.
Brown DF, Edwards DI, Hawkey PM, Morrison D, Ridgway GL, Towner KJ. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). J Antimicrob Chemother. 2005 Dec 1;56(6):1000-18. doi: 10.1093/jac/dki372, PMID 16293678.
Fisher LM, Lawrence JM, Josty IC, Hopewell R, Margerrison EEC, Cullen ME. Ciprofloxacin and the fluoroquinolones. Am J Med. 1989;87(5):S2-8. doi: 10.1016/0002-9343(89)90010-7.
Neeta D, Mohiuddin S. Fluoroquinolone therapy in staphylococcus aureus infections: where do we stand? J Lab Phys. 2020 Apr 7;5(2):112-209.
Issa NT, Wathieu H, Ojo A, Byers SW, Dakshanamurthy S. Drug metabolism in preclinical drug development: A survey of the discovery process, toxicology, and computational tools. Curr Drug Metab. 2017;18(6):556-65. doi: 10.2174/1389200218666170316093301, PMID 28302026.
Al-Omar MA. Ciprofloxacin: drug metabolism and pharmacokinetic profile. Profiles Drug Subst Excip Relat Methodol. 2005;31:209-14. doi: 10.1016/S0099-5428(04)31006-3, PMID 22469042.
Zeiler HJ, Petersen U, Gau W, Ploschke HJ. Antibacterial activity of the metabolites of ciprofloxacin and its significance in the bioassay. Arzneimittelforschung. 1987 Feb;37(2):131-4. PMID 3555512.
Rios JL, Recio MC. Medicinal plants and antimicrobial activity. J Ethnopharmacol. 2005 Aug 22;100(1-2):80-4. doi: 10.1016/j.jep.2005.04.025, PMID 15964727.
Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov. 2005 Mar;4(3):206-20. doi: 10.1038/nrd1657, PMID 15729362.
Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005 Nov;26(5):343-56. doi: 10.1016/j.ijantimicag.2005.09.002, PMID 16323269.
Xueni S, Yintao ZH, Ying ZH, Xichen L, Lili Y, Ting P. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Res. 2022 Jan 7;50(1):1324-33.
Berman HK, Henrick K, Nakamura H. Announcing the worldwide protein data bank. Nat Struct Biol. 2003;10(12):980. doi: 10.1038/nsb1203-980, PMID 14634627.
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H. The protein data bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. doi: 10.1093/nar/28.1.235, PMID 10592235.
Mukherjee S, Roychowdhury A, Dutta D, Das AK. Crystal structures of triosephosphate isomerase from methicillin-resistant staphylococcus aureus MRSA252 provide structural insights into novel modes of ligand binding and unique conformations of catalytic loop. Biochimie. 2012 Dec;94(12):2532-44. doi: 10.1016/j.biochi.2012.07.001, PMID 22813930.
Ahmad I, Aqil F. In vitro efficacy of bioactive extracts of 15 medicinal plants against ESbetaL-producing multidrug-resistant enteric bacteria. Microbiol Res. 2007;162(3):264-75. doi: 10.1016/j.micres.2006.06.010, PMID 16875811.
Sanchez Maldonado AF, Schieber A, Gänzle MG. Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J Appl Microbiol. 2011 Nov;111(5):1176-84. doi: 10.1111/j.1365-2672.2011.05141.x, PMID 21895894.
Rusch M, Spielmeyer A, Zorn H, Hamscher G. Biotransformation of ciprofloxacin by Xylaria longipes: structure elucidation and residual antibacterial activity of metabolites. Appl Microbiol Biotechnol. 2018 Oct;102(19):8573-84. doi: 10.1007/s00253-018-9231-y, PMID 30030566.
Irwin JJ, Shoichet BK. Zinc-a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005 Jan;45(1):177-82. doi: 10.1021/ci049714+, PMID 15667143.
Hsu KC, Chen YF, Lin SR, Yang JM. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinf. 2011;12 Suppl 1:S33. doi: 10.1186/1471-2105-12-S1-S33, PMID 21342564.
Hsu KC, Chen YF, Lin SR, Yang JM. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics. 2011 Feb 15;12Suppl 1:S33. doi: 10.1186/1471-2105-12-S1-S33, PMID 21342564.
Malik M, Adil M, Shubhra Ch, Saima W. Homology modeling and molecular docking analysis of human RAC-alpha serine/threonine-protein kinase. Int J Pharm Biol Sci. 2014;5(1):1033-42.
Bitencourt Ferreira G, de Azevedo WF Jr. Docking with GemDock. Methods Mol Biol. 2019;2053:169-88. doi: 10.1007/978-1-4939-9752-7_11, PMID 31452105.
Azad I, Khan T, Maurya AK, Irfan Azad M, Mishra N, Alanazi AM. Identification of severe acute respiratory syndrome coronavirus-2 inhibitors through in silico structure-based virtual screening and molecular interaction studies. J Mol Recognit. 2021 Oct;34(10):e2918. doi: 10.1002/jmr.2918, PMID 34132436.
Engelkirk PG, Duben JL. Laboratory diagnosis of infectious diseases is essential of diagnostic microbiology in gram-positive cocci. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2008.
Bradshaw LJ. Laboratory microbiology. 4th ed. Fort Worth: Saunders College Publishing; 1992.
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016 Apr;6(2):71-9. doi: 10.1016/j.jpha.2015.11.005, PMID 29403965.
Valgas C, Souza SMd, Smania EFA, Smania A. Screening methods to determine antibacterial activity of natural products. Braz J Microbiol. 2007;38(2):369-80. doi: 10.1590/S1517-83822007000200034.
Fischbach MA. Combination therapies for combating antimicrobial resistance. Curr Opin Microbiol. 2011 Oct;14(5):519-23. doi: 10.1016/j.mib.2011.08.003, PMID 21900036.
Ganotra GK, Wade RC. Prediction of drug-target binding kinetics by comparative binding energy analysis. ACS Med Chem Lett. 2018;9(11):1134-9. doi: 10.1021/ acsmedchemlett.8b00397, PMID 30429958.
Zeiler HJ, Petersen U, Gau W, Ploschke HJ. Antibacterial activity of the metabolites of ciprofloxacin and its significance in the bioassay. Arzneimittelforschung. 1987 Feb;37(2):131-4. PMID 3555512.
Emami S, Shafiee A, Foroumadi A. Structural features of new quinolones and relationship to antibacterial activity against gram-positive bacteria. Mini Rev Med Chem. 2006;6(4):375-86. doi: 10.2174/138955706776361493, PMID 16613574.
Arima H, Ashida H, Danno G. Rutin-enhanced antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Biosci Biotechnol Biochem. 2002 May;66(5):1009-14. doi: 10.1271/bbb.66.1009, PMID 12092809.
Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011 Jun;7(2):146-57. doi: 10.2174/157340911795677602, PMID 21534921.
Jain AN. Scoring functions for protein-ligand docking. Curr Protein Pept Sci. 2006 Oct;7(5):407-20. doi: 10.2174/ 138920306778559395, PMID 17073693.
Huang SY, Grinter SZ, Zou X. Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys. 2010;12(40):12899-908. doi: 10.1039/c0cp00151a, PMID 20730182.
Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966 Apr;45(4):493-6. doi: 10.1093/ ajcp/45.4_ts.493, PMID 5325707.
Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem. 2015;22(1):132-49. doi: 10.2174/ 0929867321666140916113443, PMID 25245513.
Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo Sanchez E, Nabavi SF. Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol Res. 2017;196:44-68. doi: 10.1016/j.micres.2016.12.003, PMID 28164790.
Chaisin T, Rudeekulthamrong P, Kaulpiboon J. Enzymatic synthesis, structural analysis, and evaluation of antibacterial activity and α-glucosidase inhibition of hesperidin glycosides. Catalysts. 2021;11(5):532-6. doi: 10.3390/ catal11050532.
Bouarab Chibane L, Forquet V, Lanteri P, Clement Y, Leonard Akkari L, Oulahal N. Antibacterial properties of polyphenols: characterization and QSAR (quantitative structure-activity relationship) models. Front Microbiol. 2019 Apr 18;10:829. doi: 10.3389/fmicb.2019.00829, PMID 31057527.
Vysakh PR, Jeya MP RV, MJ. A comparative analysis of community-acquired and hospital-acquired methicillin-resistant staphylococcus aureus. J Clin Diagn Res. 2013 Jul;7(7):1339-42. doi: 10.7860/JCDR/2013/5302.3139, PMID 23998061.
LeBel M. Ciprofloxacin: chemistry, mechanism of action, resistance, antimicrobial spectrum, pharmacokinetics, clinical trials, and adverse reactions. Pharmacotherapy. 1988;8(1):3-33. doi: 10.1002/j.1875-9114.1988.tb04058.x, PMID 2836821.
Drusano GL. An overview of the pharmacology of intravenously administered ciprofloxacin. The American Journal of Medicine. 1987 Apr 1;82(4A):339-45. PMID 3578325.
Bergan T, Thorsteinsson SB, Rohwedder R, Scholl H. Elimination of ciprofloxacin and three major metabolites and consequences of reduced renal function. Chemotherapy. 1989;35(6):393-405. doi: 10.1159/000238702, PMID 2612228.
Cottarel G, Wierzbowski J. Combination drugs, an emerging option for antibacterial therapy. Trends Biotechnol. 2007 Dec;25(12):547-55. doi: 10.1016/j.tibtech.2007.09.004, PMID 17997179.
Arima H, Ashida H, Danno G. Rutin-enhanced antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Biosci Biotechnol Biochem. 2002 May;66(5):1009-14. doi: 10.1271/bbb.66.1009, PMID 12092809.
Caesar LK, Cech NB. Synergy and antagonism in natural product extracts: when 1+1 does not equal 2. Nat Prod Rep. 2019 Jun 19;36(6):869-88. doi: 10.1039/c9np00011a, PMID 31187844.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Thanaa Murad
This work is licensed under a Creative Commons Attribution 4.0 International License.