IMPACT OF CALORIC VESTIBULAR STIMULATION ON CO-ORDINATION IN PARKINSON DISEASE INDUCED MICE

Authors

  • RAM MOHAN KMCH college of Physiotherapy, Coimbatore 48 https://orcid.org/0000-0003-1140-9103
  • KAYALVIZHI Department of Pharmacology, Vels Medical College and Hospital, Chennai 62
  • RASHMI RAMANATHAN Department of Physiology, KMCH Institute of Health Sciences and Research, Coimbatore 14
  • JEEVITHAN SHANMUGAM Department of Community Medicine, KMCH Institute of Health Sciences and Research, Coimbatore 14
  • ARCHANA R. Department of Physiology, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijpps.2022v14i10.45523

Keywords:

Parkinson’s disease, Vestibular stimulation, Motor coordination, Rotarod, Actophotometer

Abstract

Objective: This study was undertaken to evaluate the effect of vestibular stimulation on motor coordination in Parkinson’s disease (PD) induced mice.

Methods: 18 healthy adult male Swiss albino mice were used in this study. Vestibule was stimulated by caloric vestibular stimulation (CVS). Pesticide Rotenone was used to induce Parkinson’s disease (PD). Motor coordination was assessed by the fall-off time and the activity score using the rotarod and actophotometer, respectively.

Results: In the rotarod test, there was a significant increase in the fall-off time (p<0.01) in the CVS PD group (131.63±18.34) on the 30th day when compared to the PD group (95.33±15.17). In the actophotometer, the activity score improved in the PD CVS group on the 15 (235±47.09) and 30th days (251.38±25.76), while there was no improvement in the PD group. This shows the significant effect of caloric vestibular stimulation on motor coordination in Parkinson’s disease.

Conclusion: This study confirms that caloric vestibular stimulation with hot water resulted in the improvement of motor coordination in PD. Hence this study certainly merits further studies with a higher sample size to confirm the effect of caloric vestibular stimulation on the enhancement of motor coordination in individuals with Parkinson’s disease.

Downloads

Download data is not yet available.

References

Wilkinson D, Podlewska A, Sakel M. A durable gain in motor and non-motor symptoms of Parkinson’s disease following repeated caloric vestibular stimulation: a single-case study. Neurorehabilitation. 2016;38(2):179-82. doi: 10.3233/NRE-161308, PMID 26889733.

Black RD, Rogers LL, Ade KK, Nicoletto HA, Adkins HD, Laskowitz DT. Non-invasive neuromodulation using time-varying caloric vestibular stimulation. IEEE J Transl Eng Health Med. 2016;4(1):2000310. doi: 10.1109/JTEHM.2016.2615899, PMID 27777829.

Cai J, Lee S, Ba F, Garg S, Kim LJ, Liu A. Galvanic vestibular stimulation (GVS) augments deficient pedunculopontine nucleus (PPN) connectivity in mild Parkinson’s disease: fMRI effects of different stimuli. Front Neurosci. 2018;12:101. doi: 10.3389/fnins.2018.00101, PMID 29541016.

Kataoka H, Okada Y, Kiriyama T, Kita Y, Nakamura J, Morioka S. Can postural instability respond to galvanic vestibular stimulation in patients with Parkinson’s disease? J Mov Disord. 2016;9(1):40-3. doi: 10.14802/jmd.15030, PMID 26648182.

Khoshnam M, Haner DMC, Kuatsjah E, Zhang X, Menon C. Effects of galvanic vestibular stimulation on upper and lower extremities motor symptoms in Parkinson’s disease. Front Neurosci. 2018;12:633. doi: 10.3389/fnins.2018.00633, PMID 30254564.

Okada Y, Kita Y, Nakamura J, Kataoka H, Kiriyama T, Ueno S. Galvanic vestibular stimulation may improve anterior bending posture in Parkinson’s disease. Neuro Report. 2015;26(7):405-10. doi: 10.1097/WNR.0000000000000360, PMID 25793635.

Nistico R, Mehdawy B, Piccirilli S, Mercuri N. Paraquat- and rotenone-induced models of Parkinson’s disease. Int J Immunopathol Pharmacol. 2011;24(2):313-22. doi: 10.1177/039463201102400205, PMID 21658306.

Imran M, Mishra A, Usmani A, Eqbal A. Experimental animal models of Parkinson’s disease: an overview. Asian J Pharm Clin Res. 2020;13(11):12-7. doi: 10.22159/ajpcr.2020.v13i11.39131.

Pan W, Soma R, Kwak S, Yamamoto Y. Improvement of motor functions by noisy vestibular stimulation in central neurodegenerative disorders. J Neurol. 2008;255(11):1657-61. doi: 10.1007/s00415-008-0950-3, PMID 18677633.

Samoudi G, Jivegard M, Mulavara AP, Bergquist F. Effects of stochastic vestibular galvanic stimulation and Ldopa on balance and motor symptoms in patients with Parkinson’s disease. Brain Stimul. 2015;8(3):474-80. doi: 10.1016/ j.brs.2014.11.019, PMID 25573070.

Nasuti C, Falcioni ML, Nwankwo IE, Cantalamessa F, Gabbianelli R. Effect of permethrin plus antioxidants on locomotor activity and striatum in adolescent rats. Toxicology. 2008;251:45–50.

Darbinyan LV, Hambardzumyan LE, Simonyan KV, Chavushyan VA, Manukyan LP, Badalyan SA. Protective effects of curcumin against rotenone-induced rat model of Parkinson’s disease: in vivo electrophysiological and behavioral study. Metab Brain Dis. 2017;32(6):1791-803. doi: 10.1007/s11011-017-0060-y, PMID 28695411.

Goyal RK. Practical in pharmacology. 5th ed. Ahmedabad: BS. Shahprakashan; 2005.

Wilkinson D, Podlewska A, Banducci SE, Pellat Higgins T, Slade M, Bodani M. Caloric vestibular stimulation for the management of motor and non-motor symptoms in Parkinson’s disease: intention-to-treat data. Data Brief. 2019;25:104228. doi: 10.1016/j.dib.2019.104228, PMID 31384641.

Horvath K, Aschermann Z, Acs P, Deli G, Janszky J, Komoly S. Minimal clinically important difference on the motor examination part of MDS-UPDRS. Parkinsonism & Related Disorders. 2015;21(12):1421-6. doi: 10.1016/j.parkreldis.2015.10.006.

Horvath K, Aschermann Z, Kovacs M, Makkos A, Harmat M, Janszky J. Changes in quality of life in Parkinson’s disease: how large must they Be to be relevant? Neuroepidemiology. 2017;48(1-2):1-8. doi: 10.1159/000455863, PMID 28161701.

Chaudhuri KR, Prieto Jurcynska C, Naidu Y, Mitra T, Frades Payo B, Tluk S. The non-declaration of nonmotor symptoms of Parkinson’s disease to health care professionals: an international study using the nonmotor symptoms questionnaire. Mov Disord. 2010;25(6):704-9. doi: 10.1002/mds.22868, PMID 20437539.

Khan F, Amatya B, Galea MP, Gonzenbach R, Kesselring J. Neurorehabilitation: applied neuroplasticity. J Neurol. 2017;264(3):603-15. doi: 10.1007/s00415-016-8307-9, PMID 27778158.

Nishijima T, Torres-Aleman I, Soya H. Exercise and cerebrovascular plasticity. Prog Brain Res. 2016;225:243-68. doi: 10.1016/bs.pbr.2016.03.010, PMID 27130419.

Cullen KE. The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci. 2012;35(3):185-96. doi: 10.1016/j.tins.2011.12.001, PMID 22245372.

Dieterich M, Brandt T. Functional brain imaging of peripheral and central vestibular disorders. Brain. 2008;131(10):2538-52. doi: 10.1093/brain/awn042, PMID 18515323.

Published

01-10-2022

How to Cite

MOHAN, R., KAYALVIZHI, R. RAMANATHAN, J. SHANMUGAM, and A. R. “IMPACT OF CALORIC VESTIBULAR STIMULATION ON CO-ORDINATION IN PARKINSON DISEASE INDUCED MICE”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 14, no. 10, Oct. 2022, pp. 46-49, doi:10.22159/ijpps.2022v14i10.45523.

Issue

Section

Original Article(s)