CUBOSOMES: A BOON FOR COSMECEUTICALS AND TOPICAL DRUG DELIVERY
DOI:
https://doi.org/10.22159/ijpps.2022v14i11.45550Keywords:
Nanoparticles, Cubosomes, Bioavailability, Patient compliance, Drug release, Topical drug deliveryAbstract
Cubosomes are the nanoparticles of bicontinuous, lyotropic cubic phases, comprised of curved lipid bilayers organized into a three-dimensional honeycomb (cavernous) like structures separating two internal aqueous channels and large interfacial area. Cubic phases are optically isotropic, very viscous, and solid-like (crystalline) with cubic crystallographic symmetry. They can encapsulate hydrophilic, hydrophobic and amphiphilic drug substances, which are able to target and control the release of the bioactive agent. The cosmetic industry has made progress in the development of products to overcome skin as a barrier and deliver the actives through the skin effectively. Drug incorporated cubosomes shows some unique advantageous like, protection from chemical and physiological degradation, in vivo drug release in a controlled manner and improving the bioavailability of drug while reducing the side effect. Cubosomes are pharmacologically inactive, non-irritant, non-toxic, effective, and cosmetically acceptable. Topical drug delivery can deliver drugs selectively to the specific site; this avoids fluctuations of drug levels and improves patient compliance and suitable local and systemic therapeutic effects. Cubosomal topical drug formulation shows outstanding potential advantages for their controlled and sustained drug delivery. This review article mainly focuses on cosmetic and topical applications of cubosomes.
Downloads
References
Ijaz H, Qureshi J, Tulain UR, Iqbal F, Danish Z, Fayyaz A. Lipid particulate drug delivery systems: a review. Bioinspired Biomimetic Nanobiomater. 2018;7(2):109-21, doi: 10.1680/ jbibn.16.00039.
Sharma P, Dhawan S, Nanda S. Cubosome: A potential liquid crystalline carrier system. Curr Pharm Des. 2020;26(27):3300-16. doi: 10.2174/1381612826666200617162424, PMID 32552637.
Spicer PT, Hayden KL, Lynch ML, Ofori-Boateng A, Burns JL. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir. 2001;17(19):5748-56. doi: 10.1021/la010161w.
Barauskas J, Johnsson M, Joabsson F, Tiberg F. Cubic phase nanoparticles (Cubosome): principles for controlling size, structure, and stability. Langmuir. 2005;21(6):2569-77. doi: 10.1021/la047590p, PMID 15752054.
MS, Harshini B, Kumari PVK, Rao YS. Review on cubosomes. Int J Curr Pharm Sci. 2021;13(6):37-42. doi: 10.22159/ijcpr.2021v13i6.1926.
Ashok CK, Ramesh DR, Ola MSM, Chaudhari VA. Liquid crystals: a review. International Journal of Creative and Innovative Research in All Studies. 2019;1(12):119-29.
He H, Rahimi K, Zhong M, Mourran A, Luebke DR, Nulwala HB. Cubosomes from hierarchical self-assembly of poly (ionic liquid) block copolymers. Nat Commun. 2017;8:14057. doi: 10.1038/ncomms14057, PMID 28091605.
Shah JC, Sadhale Y, Chilukuri DM. Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev. 2001;47(2-3):229-50. doi: 10.1016/s0169-409x(01)00108-9, PMID 11311994.
Peng X, Wen X, Pan X, Wang R, Chen B, Wu C. Design and in vitro evaluation of capsaicin transdermal controlled release cubic phase gels. AAPS PharmSciTech. 2010;11(3):1405-10. doi: 10.1208/s12249-010-9481-1. PMID 20839080.
Barauskas J, Landh T. Phase behavior of the phytantriol/water system. Langmuir. 2003;19(23):9562-5. doi: 10.1021/ la0350812.
Han K, Pan X, Chen M, Wang R, Xu Y, Feng M. Phytantriol-based inverted type bicontinuous cubic phase for vascular embolization and drug sustained release. Eur J Pharm Sci. 2010;41(5):692-9. doi: 10.1016/j.ejps.2010.09.012. PMID 20883779.
Negrini R, Mezzenga R. pH-responsive lyotropic liquid crystals for controlled drug delivery. Langmuir. 2011;27(9):5296-303. doi: 10.1021/la200591u. PMID 21452814.
Yaghmur A, de Campo L, Sagalowicz L, Leser ME, Glatter O. Emulsified microemulsions and oil-containing liquid crystalline phases. Langmuir. 2005;21(2):569-77. doi: 10.1021/ la0482711, PMID 15641825.
Tang TY, Brooks NJ, Jeworrek C, Ces O, Terrill NJ, Winter R. Hydrostatic pressure effects on the lamellar to gyroid cubic phase transition of monolinolein at limited hydration. Langmuir. 2012;28(36):13018-24. doi: 10.1021/la3025843. PMID 22894718.
Chung H, Caffrey M. Polymorphism, mesomorphism, and metastability of monoelaidin in excess water. Biophys J. 1995;69(5):1951-63. doi: 10.1016/S0006-3495(95)80065-2, PMID 8580338.
Czeslik C, Winter R, Rapp G, Bartels K. Temperature-and pressure-dependent phase behavior of monoacylglyceridesmonoolein and monoelaidin. Biophys J. 1995;68(4):1423-29. doi: 10.1016/S0006-3495(95)80315-2, PMID 7787028.
Kulkarni CV. Nanostructural studies on monoelaidin-water systems at low temperatures. Langmuir. 2011;27(19):11790-800. doi: 10.1021/la201235h, PMID 21846133.
Boni LT, Hui SW. Polymorphic phase behaviour of di linoleoyl phosphatidylethanolamine and palmitoyl oleoyl phosphatidylcholine mixtures. Structural changes between hexagonal, cubic and bilayer phases. Biochim Biophys Acta. 1983;731(2):177-85. doi: 10.1016/0005-2736(83)90007-x, PMID 6849915.
Tenchov B, Rappolt M, Koynova R, Rapp G. New phases induced by sucrose in saturated phosphatidylethanolamines: an expanded lamellar gel phase and a cubic phase. Biochim Biophys Acta. 1996;1285(1):109-22. doi: 10.1016/s0005-2736(96)00156-3, PMID 8948481.
Tenchov B, Koynova R, Rapp G. Accelerated formation of cubic phases in phosphatidylethanolamine dispersions. Biophys J. 1998;75(2):853-66. doi: 10.1016/S0006-3495(98)77574-5, PMID 9675186.
Mohammady SZ, Pouzot M, Mezzenga R. Oleoylethanolamide-based lyotropic liquid crystals as vehicles for delivery of amino acids in aqueous environment. Biophys J. 2009;96(4):1537-46. doi: 10.1016/j.bpj.2008.10.057. PMID 19217870.
Sjölund M, Lindblom G, Rilfors L, Arvidson G. Hydrophobic molecules in lecithin-water systems. I. Formation of reversed hexagonal phases at high and low water contents. Biophys J. 1987;52(2):145-53. doi: 10.1016/S0006-3495(87)83202-2, PMID 2822159.
Rama Krishna YV, Marsh D. Spin label ESR and 31P-NMR studies of the cubic and inverted hexagonal phases of dimyristoylphosphatidylcholine/myristic acid (1:2, mol/mol) mixtures. Biochim Biophys Acta. 1990;1024(1):89-94. doi: 10.1016/0005-2736(90)90211-6, PMID 2159807.
Eriksson PO, Lindblom G. Lipid and water diffusion in bicontinuous cubic phases measured by NMR. Biophys J. 1993;64(1):129-36. doi: 10.1016/S0006-3495(93)81347-X, PMID 8431537.
Takahashi H, Hatta I, Quinn PJ. Cubic phases in hydrated 1:1 and 1:2 dipalmitoylphosphatidylcholine-dipalmitoylglycerol mixtures. Biophys J. 1996;70(3):1407-11. doi: 10.1016/S0006-3495(96)79699-6, PMID 8785296.
Koynova R, Tenchov B, Rapp G. Low amounts of PEG-lipid induce cubic phase in phosphatidylethanolamine dispersions. Biochim Biophys Acta. 1997;1326(2):167-70. doi: 10.1016/s0005-2736(97)00067-9, PMID 9218547.
Boyd BJ, Whittaker DV, Khoo SM, Davey G. Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm. 2006;309(1-2):218-26. doi: 10.1016/j.ijpharm.2005.11.033. PMID 16413980.
Fong C, Wells D, Krodkiewska I, Booth J, Hartley PG. Synthesis and mesophases of glycerate surfactants. J Phys Chem B. 2007;111(6):1384-92. doi: 10.1021/jp0659655, PMID 17286353.
Hato M, Minamikawa H. The effects of oligosaccharide stereochemistry on the physical properties of aqueous synthetic glycolipids. Langmuir. 1996;12(6):1658-65. doi: 10.1021/la950326z.
Chen Y, Ma P, Gui S. Gui S. Cubic and hexagonal liquid crystals as drug delivery systems. BioMed Res Int. 2014;2014:815981. doi: 10.1155/2014/815981, PMID 24995330.
Prashar D, Sharma D. Cubosomes: A sustained drug delivery Carrier. Asian J Res Pharm Sci. Jul-Sep 2011;1(3):59-62.
Rizwan SB, Boyd BJ. Cubosomes: structure, preparation and use as an antigen delivery system. Advances in Delivery Science and Technology. 2015:125-40. doi: 10.1007/978-1-4939-1417-3_7.
Kaur SD, Singh G, Singh G, Singhal K, Kant S, Bedi N. Cubosomes as a potential nanocarrier for drug delivery: A comprehensive review. J Pharm Res Int. 2021;33(31B):118-35, doi: 10.9734/jpri/2021/v33i31B31698.
Sguizzato M, Esposito E, Cortesi R. Lipid-based nanosystems as a tool to overcome skin barrier. Int J Mol Sci. 2021, Aug 2;22(15):8319. doi: 10.3390/ijms22158319, PMID 34361084.
Dhadwal A, Sharma DR, Pandit V, Ashawat MS, Kumar P. Cubosomes: A novel carrier for transdermal drug delivery. J Drug Delivery Ther 2020;10(1):123-30. doi: 10.22270/jddt.v10i1.3814.
Ueoka AR, Moraes CAP. Development and stability evaluation of liquid crystal-based formulations containing glycolic plant extracts and nano-actives. Cosmetics. 2018;5(2):1-7. doi: 10.3390/cosmetics5020025.
Otto A, du Plessis J, Wiechers JW. Formulation effects of topical emulsions on transdermal and dermal delivery. Int J Cosmet Sci. 2009;31(1):1-19. doi: 10.1111/j.1468-2494.2008.00467.x. PMID 19134123.
Azmi ID, Moghimi SM, Yaghmur A. Cubosomes and hexosomes as versatile platforms for drug delivery. Ther Deliv. 2015;6(12):1347-64. doi: 10.4155/tde.15.81, PMID 26652281.
Witika BA, Mweetwa LL, Tshiamo KO, Edler K, Matafwali SK, Ntemi PV. Vesicular drug delivery for the treatment of topical disorders: current and future perspectives. J Pharm Pharmacol. 2021;73(11):1427-41. doi: 10.1093/jpp/rgab082, PMID 34132342.
Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today. 2016;21(5):789-801. doi: 10.1016/j.drudis.2016.01.004. PMID 26780385.
Bouwstra JA, Honeywell Nguyen PL, Gooris GS, Ponec M. Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res. 2003;42(1):1-36. doi: 10.1016/s0163-7827(02)00028-0., PMID 12467638.
Thadanki M, Kumari PS, Prabha K. Overview of cubosomes: a nano particle. Int J Res Pharm Chem. 2011;1(3):535-41.
Sadhu, Venkateswara, Beram, Naga, Kantamneni, Padmalatha Sadhu VR, Beram NS, Kantamneni P. A review on cubosome: the novel drug delivery system. GSC biol. pharm. sci. GSC Biol and Pharm Sci. 2018;5(1):76-81. doi: 10.30574/ gscbps.2018.5.1.0089.
Bender J, Ericson MB, Merclin N, Iani V, Rosen A, Engstrom S, Moan J. Lipid cubic phases for improved topical drug delivery in photodynamic therapy. J Control Release. 2005;106(3):350-60. doi: 10.1016/j.jconrel.2005.05.010, PMID 15967535.
Gaballa S, El Garhy O, Abdelkader H. Cubosomes: composition, preparation, and drug delivery applications. Journal of Advanced Biomedical and Pharmaceutical Sciences. 2019. doi: 10.21608/jabps.2019.16887.1057.
Molly BA, Prasanthi NL. Cubic liquid crystalline nanoparticles (cubosomes): a novel carrier for drug delivery. IJPSR. 2019;10(3):973-84. doi: 10.13040/IJPSR.0975-8232.10(3).973-84.
Norleen L, Al-Amoudi A. Stratum corneum keratin structure, function, and formation: the cubic rod-packing and membrane templating model. J Invest Dermatol. 2004;123(4):715-32. doi: 10.1111/j.0022-202X.2004.23213.x.x, PMID 15373777.
Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, Stellin E, Menegatti E, Bonina F, Puglia C. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res. 2005;22(12):2163-73. doi: 10.1007/s11095-005-8176-x, PMID 16267633.
Spicer PT, Small WB, Small WB, Lynch ML, Burns JL. J Nanopart Res. 2002;4(4):297-311. doi: 10.1023/A:1021184216308.
Boge L, Hallstensson K, Ringstad L, Johansson J, Andersson T, Davoudi M, Larsson PT, Mahlapuu M, Hakansson J, Andersson M. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur J Pharm Biopharm. 2019;134:60-67. doi: 10.1016/j.ejpb.2018.11.009. PMID: 30445164.
Hundekar YR, Saboji JK, Patil SM, Nanjwade B. Preparation and evaluation of diclofenac sodium cubosomes for percutaneous administration. WJPPS. 2014;3:523-39.
Pan X, Han K, Peng X, Yang Z, Qin L, Zhu C, Huang X, Shi X, Dian L, Lu M, Wu C. Nanostructured cubosomes as advanced drug delivery system. Curr Pharm Des. 2013;19(35):6290-7. doi: 10.2174/1381612811319350006, PMID 23470001.
Esposito E, Drechsler M, Nastruzzi C, Cortesi R. Cubic phases, cubosomes and ethosomes for cutaneous application. Curr Pharm Des. 2016;22(35):5382-99. doi: 10.2174/ 1381612822666160726123227, PMID 27839503.
Amani Zoabi A, Elka Touitou, Katherine Touitou E, Margulis K. Recent advances in nanomaterials for dermal and transdermal applications. Colloids Interfaces. 2021;5(1):18. doi: 10.3390/colloids5010018.
Xu Q, Crossley A, Czernuszka J. Preparation and characterization of negatively charged poly(lactic-co-glycolic acid) microspheres. J Pharm Sci. 2009;98(7):2377-89. doi: 10.1002/jps.21612, PMID 19009589.
Rizwan SB, Hanley T, Boyd BJ, Rades T, Hook S. Liquid crystalline systems of phytantriol and glyceryl monooleate containing a hydrophilic protein: characterisation, swelling and release kinetics. J Pharm Sci. 2009;98(11):4191-204. doi: 10.1002/jps.21724, PMID 19340889.
Salwa S, Azza A, Amany OSalah S, Mahmoud AA, Kamel AO. Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis: ex vivo permeation and in vivo pharmacokinetic studies. Drug Deliv. 2017;24(1):846-56. doi: 10.1080/10717544.2017.1326539, PMID 28535740.
Mohyeldin SM, Mehanna MM, Elgindy NA. Superiority of liquid crystalline cubic nanocarriers as hormonal transdermal vehicle: comparative human skin permeation-supported evidence. Expert Opin Drug Deliv. 2016 Aug;13(8):1049-64. doi: 10.1080/17425247.2016.1182490, PMID 27167758.
Joshi D, Rathore S, chouhan V. A review on: The bicontinuous cubic phase. RRJPPS. Nanoparticulate. 2021;10(3):1-7.
Yara EE, Mona KY. Challenge of cubosomes in advanced and targeting drug delivery systems. Int J Sci Eng Res. 2019;10(7):1740-9.
Kurapati, Srinivas. The current role of nanomaterials in cosmetics. J Chem Pharm Res. 2016;8(5):906-14.
Anbarasan BA, Fatima GXA, Shanmuganathan SA. An overview of cubosomes. Smart drug delivery system. Sri Ramachandra J Med. 2015;8:1-4.
Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharmaceutica Sinica B. 2021;11(4):871-85. doi: 10.1016/j.apsb.2021.02.013. PMID: 33996404.
Daware SU, Saudagar RB. Formulation and development of cubosome loaded emulgel. International Journal of Chem Technol Research. 2017;10(7):918-24.
Souto EB, Fernandes AR, Martins Gomes C, Coutinho TE, Durazzo A, Lucarini M, Souto SB, Silva AM, Santini A. Nanomaterials for skin delivery of cosmeceuticals and pharmaceuticals,. Appl Sci. 2020;10(5):1594. doi: 10.3390/app10051594.
Sadhu P, Singh PH, Kumari M, Dash DK, Patel S, Shah N, Seth AK. Trends in cosmeceuticals based nanotechnology: up-to-date. Journal of Pharmaceutical Research International. 2021;33(37B):136-49. doi: 10.9734/jpri/2021/v33i37B32033.
Rahman HS, Othman HH, Hammadi NI, Yeap SK, Amin KM, Abdul Samad N, Alitheen NB. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. International Journal of Nanomedicine. 2020;15:2439-83. doi: 10.2147/IJN.S227805. PMID 32346289, PMCID PMC7169473.
Rigon RB, Oyafuso MH, Fujimura AT, Gonçalez ML, do Prado AH, Gremiao MP, Chorilli M. Nanotechnology-based drug delivery systems for melanoma antitumoral therapy: a review. BioMed Research International. 2015;2015:1-22841817. doi: 10.1155/2015/841817, PMID 26078967.
Kapoor K, Pandit V, Nagaich U. Development and characterization of sustained release methotrexate loaded cubosomes for topical delivery in rheumatoid arthritis. Int J App Pharm. 2020;12(3):33-9. doi: 10.22159/ijap.2020v12i3.36863.
Barriga HMG, Holme MN, Stevens MM. Cubosomes: the next generation of smart lipid nanoparticles? Angew Chem Int Ed Engl 2019. 2019;58(10):2958-78. doi: 10.1002/ anie.201804067, PMID 29926520.
Koma, Tilekar, Prashant, Khade, Sujit, Kakade. Cubosomes-a drug delivery system. Int J Pharm Chem Biol Sci. 2014;4(4):812-24.
Bhosale R, Osmani R, Harkare B. Cubosomes: the inimitable nanoparticulate drug carriers. Sch Acad J Pharmacol 2013;2(6):481-6.
Sherif S, Bendas ER, Badawy S. The clinical efficacy of cosmeceutical application of liquid crystalline nanostructured dispersions of alpha lipoic acid as anti-wrinkle. Eur J Pharm Biopharm. 2014 Feb;86(2):251-9. doi: 10.1016/j.ejpb.2013.09.008. PMID 24056055.
Pooja P, Roma M, Sreeja MK. Development and optimisation of quercetin cubosomes incorporated in glycerylmonooleate aided by design expert software. IJPPR Hum. 2018;11(4):80-106.
Omar S, Ismail A, Hassanin K, Hamdy S. Formulation and evaluation of cubosomes as skin retentive system for topical delivery of clotrimazole. Journal of Advanced Pharmacy Research. 2019;3(2):68-82. doi: 10.21608/aprh.2019.9839.1079.
Ananda KC, Madhubabu A, Padmanabha, Vasudha VB, Vinod KY. Design, formulation, in vitro and ex-vivo evaluation of atazanavir-loaded cubosomal gel. Biointerface Res Appl Chem. 2021;11(4):12037-54. doi: 10.33263/BRIAC114.1203712054.
Nitika, Nikita, KI SY. Formulation, development and optimization of itraconazole cubosomal gel for the treatment of candidiasis. Int J Pharm Anal Acta. 2020;3(1):15-9.
Ruchi S, Gurvinder K, Deepak NK. Fluconazole loaded cubosomal vesicles for topical delivery. Int J Drug Dev Res. 2015;7:32-41.
Sherif S, Bendas ER, Badawy S. The clinical efficacy of cosmeceutical application of liquid crystalline nanostructured dispersions of alpha lipoic acid as anti-wrinkle. Eur J Pharm Biopharm. 2014;86(2):251-9. doi: 10.1016/j.ejpb.2013.09.008, PMID 24056055.
Salomao MJA, Praça FG, Peh HY, Foloni AR, da Silva DA, de Carvalho BM. Preparation and physicochemical characterization of glyceryl monoolein bearing cubosomes to improve vitamin e delivery into the skin: a proposal for skin cancer prevention. Drug Deliv Lett 2018;8(3):234-41. doi: 10.2174/2210303108666180629150348.
Published
How to Cite
Issue
Section
Copyright (c) 2022 V. CHANDRAKALA
This work is licensed under a Creative Commons Attribution 4.0 International License.