COMPREHENSIVE THERAPEUTIC INTERVENTIONS AGAINST SARS-COV-2: A REVIEW AND PROSPECTIVE

Authors

  • NILANJANA PRASAD Department of Biotechnology and Microbiology, Noida International University, Greater Noida 203201, Uttar Pradesh, India https://orcid.org/0000-0002-7753-5180
  • DEBANJANA PRASAD Department of Biotechnology and Microbiology, Noida International University, Greater Noida 203201, Uttar Pradesh, India https://orcid.org/0000-0002-0202-1038

DOI:

https://doi.org/10.22159/ijpps.2022v14i11.46171

Keywords:

COVID-19, SARS-CoV-2, Coronavirus, FDA, Convalescent plasma, Virus evolution

Abstract

In December 2019, Wuhan City, Hubei Province, China, first reported pneumonia like symptoms with unknown aetiology caused by a novel coronavirus. The novel coronavirus was renamed as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by Coronaviridae Study Group of the International Committee on Taxonomy of Viruses and the disease was termed as Coronavirus Disease 2019 (COVID-19). As of 19 August, 2022, the infection has reached above 220 countries, areas or territories with a total of 591 683 619 confirmed cases and 6 443 306 deaths, as published by the World Health Organization (WHO). SARS-CoV-2 is strongly contagious as it has R0, 2.2-2.6, in comparison to SARS-CoV (<1) and Middle East respiratory syndrome coronavirus (MERS-CoV) (1.4-2.5), respectively. SARS-CoV-2 might become less virulent than the SARS-CoV and MERS-CoV, with the currently analyzed mortality of COVID-19 is 3.4%. The original SARS-CoV-2 has undergone “virus evolution” with the occurrence of numerous variants such as Alpha, Beta, Gamma and Delta etc. Recently, the circulating variant of concern is Omicron subvariants. Currently, real-time reverse transcription–polymerase chain reaction-based detection of the viral genome (RNA) is the gold standard for diagnosis of SARS-CoV-2 infection. At present, Remdesivir (RDV) and Baricitinib drugs as well as vaccines Pfizer-BioNTech and Moderna have been approved for the treatment of COVID-19 by Food and Drug Administration (FDA). In this review, we summarized the existing state of knowledge on approved antiviral therapy, combination therapy, blood-derived therapeutics and immunomodulators to treat COVID-19 pandemic.

Downloads

Download data is not yet available.

References

Qadrie ZL, Wani SUD, Gautam SP, Khan MKA. Outbreak, epidemiology, therapeutics and prevention of coronavirus disease-2019: a review. Int J Curr Pharm Sci. 2020;12(5):1-4. doi: 10.22159/ijcpr.2020v12i5.39755.

Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe. 2020;27(4):671-680.e2. doi: 10.1016/j.chom.2020.03.002. PMID 32183941.

MA SM, Hassan S. Assess the awareness and attitude regarding prevention of coronavirus disease 2019. Asian J Pharm Clin Res. 2020;2020:95-8. doi: 10.22159/ajpcr.2020.v13i7.37804.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3. doi: 10.1038/s41586-020-2012-7, PMID 32015507.

Sukumaran S, Sathianarayanan S. A review on covid-19 pandemic a global threat-current status and challenges and preventive strategies. Int J App Pharm. 2021;13(5):10-4. doi: 10.22159/ijap.2021v13i5.42070.

Ji W, Wang W, Zhao X, Zai J, Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol. 2020;92(4):433-40. doi: 10.1002/jmv.25682, PMID 31967321.

Zheng M, Song L. Novel antibody epitopes dominate the antigen city of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cell Mol Immunol. 2020;17(5):536-8. doi: 10.1038/s41423-020-0385-z, PMID 32132669.

Nandagopal M, Balakrishnan A, Padhiar C. Trinity of severe acute respiratory syndrome Coronavirus-2: origin, genotype, phenotype, and immune response in coronavirus disease-201. Asian J Pharm Clin Res. 2021. v14i9.42363;2021;14(9):28-36. doi: 10.22159/ajpcr.

World Health Organization. Coronavirus disease (COVID-19) dashboard; 2020.

World Health Organization. Situation by WHO region; 2020.

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9. doi: 10.1038/s41586-020-2008-3, PMID 32015508.

Gussow AB, Auslander N, Faure G, Wolf YI, Zhang F, Koonin EV. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proc Natl Acad Sci USA. 2020;117(26):15193-9. doi: 10.1073/pnas.2008176117, PMID 32522874.

Hoffmann M, Kleine Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052, PMID 32142651.

Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. doi: 10.1056/NEJMoa2002032, PMID 32109013.

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199-207. doi: 10.1056/NEJMoa2001316, PMID 31995857.

Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020;172(9):577-82. doi: 10.7326/M20-0504, PMID 32150748.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. doi: 10.1001/jama.2020.1585, PMID 32031570.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7, PMID 32007143.

Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ. 2020;368:m792. doi: 10.1136/bmj.m606.

Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-43. doi: 10.1001/jamainternmed.2020.0994, PMID 32167524.

Pan L, Mu M, Yang P, Sun Y, Wang R, Yan J. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: A descriptive, cross-sectional, multicenter study. Am J Gastroenterol. 2020;115(5):766-73. doi: 10.14309/ajg.0000000000000620, PMID 32287140.

Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-81. doi: 10.1016/S2213-2600(20)30079-5, PMID 32105632.

Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9. doi: 10.12932/AP-200220-0772, PMID 32105090.

Phan LT, Nguyen TV, Luong QC, Nguyen TV, Nguyen HT, Le HQ. Importation and human-to-human transmission of a novel coronavirus in Vietnam. N Engl J Med. 2020;382(9):872-4. doi: 10.1056/NEJMc2001272, PMID 31991079.

Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill. 2020;25(4):2000058. doi: 10.2807/1560-7917.ES.2020.25.4.2000058, PMID 32019669.

Zhao J, Yang Y, Huang H, Li D, Gu D, Lu X. Relationship between the ABO blood group and the coronavirus disease 2019 (COVID-19) susceptibility. Clin Infect Dis. 2021;73(2):328-31. doi: 10.1093/cid/ciaa1150, PMID 32750119.

de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523-34. doi: 10.1038/nrmicro.2016.81, PMID 27344959.

Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava Ranjan P, Hotard AL. GS-5734 and its parent nucleoside analog inhibit Filo, Pneumo, and Paramyxoviruses. Sci Rep. 2017;7:43395. doi: 10.1038/srep43395, PMID 28262699.

Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017;9(396):eaal3653. doi: 10.1126/scitranslmed.aal3653. PMID 28659436.

Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531(7594):381-5. doi: 10.1038/nature17180, PMID 26934220.

Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1):222. doi: 10.1038/s41467-019-13940-6, PMID 31924756.

Williamson BN, Feldmann F, Schwarz B, Meade White K, Porter DP, Schulz J. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature. 2020;585(7824):273-6. doi: 10.1038/s41586-020-2423-5, PMID 32516797.

Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med. 2020;12(541):eabb5883. doi: 10.1126/scitranslmed.abb5883. PMID 32253226.

Piscoya A, Ng-Sueng LF, Parra del Riego A, Cerna Viacava R, Pasupuleti V, Roman YM. Efficacy and harms of remdesivir for the treatment of COVID-19: A systematic review and meta-analysis. PLOS ONE. 2020;15(12):e0243705. doi: 10.1371/journal.pone.0243705. PMID 33301514.

Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC. Remdesivir for the treatment of covid-19–final report. N Engl J Med. 2020;383(19):1813-26. doi: 10.1056/NEJMoa2007764. PMID 32445440.

Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A. Compassionate use of remdesivir for patients with severe covid-19. N Engl J Med. 2020;382(24):2327-36. doi: 10.1056/NEJMoa2007016, PMID 32275812.

Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569-78. doi: 10.1016/S0140-6736(20)31022-9, PMID 32423584.

Black RH, Canfield CJ, Clyde DF, Peters W. In: Bruce-Chwatt LJ, editor. Chemotherapy of malaria. 2nd ed. England: Bath Press; 1986. p. 227-44.

Winzeler EA. Malaria research in the post-genomic era. Nature. 2008;455(7214):751-6. doi: 10.1038/nature07361, PMID 18843360.

Parhizgar AR, Tahghighi A. Introducing new antimalarial analogues of chloroquine and amodiaquine: A narrative review. Iran J Med Sci. 2017;42(2):115-28. PMID 28360437.

Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis. 2003;3(11):722-7. doi: 10.1016/s1473-3099(03)00806-5, PMID 14592603.

Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. 2004;323(1):264-68. doi: 10.1016/j.bbrc.2004.08.085. PMID 15351731.

Keyaerts E, Li S, Vijgen L, Rysman E, Verbeeck J, Van Ranst M. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob Agents Chemother. 2009;53(8):3416-21. doi: 10.1128/AAC.01509-08, PMID 19506054.

Yan Y, Zou Z, Sun Y, Li X, Xu KF, Wei Y. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res. 2013; 23(2):300-2. doi: 10.1038/cr.2012.165, PMID 23208422.

Blau DM, Holmes KV. Human coronavirus HCoV-229E enters susceptible cells via the endocytic pathway. Adv Exp Med Biol. 2001;494:193-8. doi: 10.1007/978-1-4615-1325-4_31, PMID 11774468.

Johansen LM, Brannan JM, Delos SE, Shoemaker CJ, Stossel A, Lear C. FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection. Sci Transl Med. 2013;5(190):190ra79. doi: 10.1126/scitranslmed.3005471, PMID 23785035.

Madrid PB, Chopra S, Manger ID, Gilfillan L, Keepers TR, Shurtleff AC. A systematic screen of FDA-approved drugs for inhibitors of biological threat agents. PLoS One 2013;8(4):e60579. doi: 10.1371/journal.pone.0060579.

Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;55(5):105938. doi: 10.1016/j.ijantimicag.2020.105938. ijantimicag.2020.105938. PMID 32171740.

Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BiosSci Trends. 2020;14(1):72-3. doi: 10.5582/bst.2020.01047, PMID 32074550.

Borba MGS, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, Brito M. Effect of High vs Low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A randomized clinical trial. JAMA Netw Open. 2020;3(4):e208857. doi: 10.1001/jamanetworkopen.2020.8857, PMID 32330277.

Huang M, Tang T, Pang P, Li M, Ma R, Lu J. Treating COVID-19 with Cchloroquine. J Mol Cell Biol. 2020;12(4):322-5. doi: 10.1093/jmcb/mjaa014, PMID 32236562.

Net. MedicineNet. Hydroxychloroquine (Plaquenil); 2020.

Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China. Clin Immunol. 2020;214:108393. doi: 10.1016/j.clim.2020.108393. PMID 32222466.

Marmor MF, Kellner U, Lai TY, Melles RB, Mieler WF, American Academy of Ophthalmology. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 Revision). Ophthalmology. 2016;123(6):1386-94. doi: 10.1016/j.ophtha.2016.01.058, PMID 26992838 Revision). Ophthalmology 2016;123(6):1386-94. doi: 10.1016/j.ophtha.2016.01.058.

Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: the reality and challenges. J Microbiol Immunol Infect. 2020;53(3):436-43. doi: 10.1016/j.jmii.2020.03.034, PMID 32307245.

Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020;1771(15):732-9. doi: 10.1093/cid/ciaa237, PMID 32150618.

Mahevas M, Tran VT, Roumier M, Chabrol A, Paule R, Guillaud C. Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data. BMJ. 2020;369:m1844. doi: 10.1136/bmj.m1844. m1844. PMID 32409486.

Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G. Observational study of hydroxychloroquine in hospitalized patients with covid-19. N Engl J Med. 2020;382(25):2411-8. doi: 10.1056/NEJMoa2012410, PMID 32379955.

Magagnoli J, Narendran S, Pereira F, Cummings TH, Hardin JW, Sutton SS. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with COVID-19. medRxiv [preprint]. medRxiv. 2020:2020.04.16.20065920. doi: 10.1101/2020.04.16.20065920, PMID 32511622.

Tang W, Cao Z, Han M, Wang Z, Chen J, Sun W. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020;369:m1849. doi: 10.1136/bmj.m1849. PMID 32409561.

Choudhary R, Sharma AK. Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance. New Microbes New Infect. 2020;35:100684. doi: 10.1016/j.nmni.2020.100684. PMID 32322397.

Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, Sandoval-Espinosa C. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci USA. 2016;113(50):14408-13. doi: 10.1073/pnas.1618029113, PMID 27911847.

Bosseboeuf E, Aubry M, Nhan T, de Pina JJ, Rolain JM, Raoult D. Azithromycin inhibits the replication of Zika virus. J Antivirals Antiretrovirals. 2018;10(1):6-11. doi: 10.4172/1948-5964.1000173.

Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949. doi: 10.1016/j.ijantimicag.2020.105949, PMID 32205204.

Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Sevestre J. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med Infect Dis. 2020;34:101663. doi: 10.1016/j.tmaid.2020.101663. PMID 32289548.

Mercuro NJ, Yen CF, Shim DJ, Maher TR, McCoy CM, Zimetbaum PJ. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(9):1036-41. doi: 10.1001/jamacardio.2020.1834, PMID 32936252.

Molina JM, Delaugerre C, Le Goff J, Mela-Lima B, Ponscarme D, Goldwirt L. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect. 2020;50(4):384. doi: 10.1016/j.medmal.2020.03.006. PMID 32240719.

Chorin E, Dai M, Shulman E, Wadhwani L, Bar-Cohen R, Barbhaiya C. The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nat Med. 2020;26(6):808-9. doi: 10.1038/s41591-020-0888-2, PMID 32488217.

Cavalcanti AB, Zampieri FG, Rosa RG, Azevedo LCP, Veiga VC, Avezum A. Hydroxychloroquine with or without azithromycin in mild-to-moderate covid-19. N Engl J Med. 2020;383(21):2041-52. doi: 10.1056/NEJMoa2019014, PMID 32706953.

Sham HL, Kempf DJ, Molla A, Marsh KC, Kumar GN, Chen CM. ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease. Antimicrob Agents Chemother. 1998;42(12):3218-24. doi: 10.1128/AAC.42.12.3218, PMID 9835517.

Debouck C. The HIV-1 protease as a therapeutic target for AIDS. AIDS Res Hum Retroviruses. 1992;8(2):153-64. doi: 10.1089/aid.1992.8.153, PMID 1540403.

Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252-6. doi: 10.1136/thorax.2003.012658, PMID 14985565.

Chen F, Chan KH, Jiang Y, Kao RY, Lu HT, Fan KW. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol. 2004;31(1):69-75. doi: 10.1016/j.jcv.2004.03.003. PMID 15288617.

Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF, Cheng YS. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc Natl Acad Sci USA. 2004;101(27):10012-7. doi: 10.1073/pnas.0403596101, PMID 15226499.

Chan JF, Yao Y, Yeung ML, Deng W, Bao L, Jia L. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis. 2015;212(12):1904-13. doi: 10.1093/infdis/jiv392, PMID 26198719.

Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ. Case of the index patient who caused tertiary transmission of coronavirus disease 2019 in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 pneumonia monitored by quantitative RT-PCR. J Korean Med Sci. 2020;35(6):e79. doi: 10.3346/jkms.2020.35.e79.

Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. BioSci Trends. 2020;14(1):64-8. doi: 10.5582/bst.2020.01030, PMID 32037389.

Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N Engl J Med. 2020;382(19):1787-99. doi: 10.1056/NEJMoa2001282, PMID 32187464.

Chen J, Ling Y, Xi X, Liu P, Li F, Li T. Efficacies of lopinavir/ritonavir and abidol in the treatment of novel coronavirus pneumonia. Chin J Infect Dis. 2020;38:86-9. doi: 10.1016/j.medj.2020.04.001.

Li Y, Xie Z, Lin W, Cai W, Wen C, Guan Y. Efficacy and safety of lopinavir/ritonavir or arbidol in adult patients with mild/moderate COVID-19: an exploratory randomized controlled trial. Med (NY). 2020;1(1):105-13105-113.e4. doi: 10.1016/j.medj.2020.04.001. PMID 32838353.

Deeks ED. Darunavir/cobicistat/emtricitabine/tenofovir alafenamide: a review in HIV-1 infection. Drugs. 2018;78(10):1013-24. doi: 10.1007/s40265-018-0934-2, PMID 29915897.

JohnsonandJohnson. Lack of evidence to support use of darunavir based treatment for SARS-CoV-2 [internet]. US Johnson and Johnson; 2020.

Iyer M, Jayaramayya K, Subramaniam MD, Lee SB, Dayem AA, Cho SG. COVID-19: an update on diagnostic and therapeutic approaches. BMB Rep. 2020;53(4):191-205. doi: 10.5483/BMBRep.2020.53.4.080, PMID 32336317.

Rajam G, Sampson J, Carlone GM, Ades EW. An augmented passive immune therapy to treat fulminant bacterial infections. Recent Pat Antiinfect Drug Discov. 2010;5(2):157-67. doi: 10.2174/157489110791233496, PMID 20370679.

Virdi V, Depicker A. Role of plant expression systems in antibody production for passive immunization. Int J Dev Biol. 2013;57(6-8):587-93. doi: 10.1387/ijdb.130266ad, PMID 24166441.

Roback JD, Guarner J. Convalescent plasma to treat COVID-19: possibilities and challenges. JAMA. 2020;323(16):1561-2. doi: 10.1001/jama.2020.4940, PMID 32219429.

International Severe Acute Respiratory and Emerging Infection Consortium (U.K.). Treatment of MERS-CoV: information for Clinicians Clinical decision-making support for treatment of MERS-CoV patients. London: Public Health England; 2014.

Hung IF, To KK, Lee CK, Lee KL, Chan K, Yan WW. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza a (H1N1) 2009 virus infection. Clin Infect Dis. 2011;155252(4):447-56. doi: 10.1093/cid/ciq106, PMID 21248066.

Soo YO, Cheng Y, Wong R, Hui DS, Lee CK, Tsang KK. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect. 2004;10(7):676-8. doi: 10.1111/j.1469-0691.2004.00956.x.x. PMID 15214887.

Liu W, Fontanet A, Zhang PH, Zhan L, Xin ZT, Baril L. Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J Infect Dis. 2006;193(6):792-5. doi: 10.1086/500469, PMID 16479513.

Yeh KM, Chiueh TS, Siu LK, Lin JC, Chan PK, Peng MY. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J Antimicrob Chemother. 2005;56(5):919-22. doi: 10.1093/jac/dki346, PMID 16183666.

Luke TC, Kilbane EM, Jackson JL, Hoffman SL. Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann Intern Med. 2006;145(8):599-609. doi: 10.7326/0003-4819-145-8-200610170-00139, PMID 16940336.

Casadevall A, Pirofski LA. The convalescent sera option for containing COVID-19. J Clin Invest. 2020;130(4):1545-8. doi: 10.1172/JCI138003, PMID 32167489.

Zeng QL, Yu ZJ, Gou JJ, Li GM, Ma SH, Zhang GF. Effect of convalescent plasma therapy on viral shedding and survival in patients with coronavirus disease 2019. J Infect Dis. 2020;222(1):38-43. doi: 10.1093/infdis/jiaa228, PMID 32348485.

Duan K, Liu B, Li C, Zhang H, Yu T, Qu J. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA. 2020;117(17):9490-6. doi: 10.1073/pnas.2004168117, PMID 32253318.

Wang X, Guo X, Xin Q, Pan Y, Hu Y, Li J. Neutralizing antibody responses to severe acute respiratory syndrome coronavirus 2 in coronavirus disease 2019 inpatients and convalescent patients. Clin Infect Dis. 2020;71(10):2688-94. doi: 10.1093/cid/ciaa721, PMID 32497196.

Ye M, Fu D, Ren Y, Wang F, Wang D, Zhang F. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China. J Med Virol. 2020;92(10):1890-1901. doi: 10.1002/jmv.25882, PMID 32293713.

Ahn JY, Sohn Y, Lee SH, Cho Y, Hyun JH, Baek YJ. Use of convalescent plasma therapy in two COVID-19 patients with acute respiratory distress syndrome in Korea. J Korean Med Sci. 2020;35(14):e149. doi: 10.3346/jkms.2020.35.e149. PMID 32281317.

Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: A randomized clinical trial. JAMA. 2020;324(5):460-70. doi: 10.1001/jama.2020.10044, PMID 32492084.

Shao Z, Feng Y, Zhong L, Xie Q, Lei M, Liu Z. Clinical efficacy of intravenous immunoglobulin therapy in critical ill patients with COVID-19: a multicenter retrospective cohort study. Clin Transl Immunology. 2020;9(10):e1192. doi: 10.1002/cti2.1192, PMID 33082954.

Galeotti C, Kaveri SV, Bayry J. IVIG-mediated effector functions in autoimmune and inflammatory diseases. Int Immunol. 2017;29(11):491-8. doi: 10.1093/intimm/dxx039, PMID 28666326.

Hartung HP. Advances in the understanding of the mechanism of action of IVIg. J Neurol. 2008;3255Suppl 3:3-6. doi: 10.1007/s00415-008-3002-0, PMID 18685919.

Busani S, Damiani E, Cavazzuti I, Donati A, Girardis M. Intravenous immunoglobulin in septic shock: review of the mechanisms of action and meta-analysis of the clinical effectiveness. Minerva Anestesiol. 2016;82(5):559-72. PMID 26474267.

Lai ST. Treatment of severe acute respiratory syndrome. Eur J Clin Microbiol Infect Dis. 2005;24(9):583-91. doi: 10.1007/s10096-005-0004-z, PMID 16172857.

Sakoulas G, Geriak M, Kullar R, Greenwood Kristina HM, Vyas A. Intravenous immunoglobulin (IVIG) significantly reduces respiratory morbidity in COVID-19 pneumonia: a prospective randomized trial. medRxiv; 2020. doi: 10.1101/2020.07.20.20157891.

Golchin A, Farahany TZ, Khojasteh A, Soleimanifar F, Ardeshirylajimi A. The clinical trials of mesenchymal stem cell therapy in skin diseases: an update and concise review. Curr Stem Cell Res Ther. 2019;14(1):22-33. doi: 10.2174/1574888X13666180913123424, PMID 30210006.

Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020;11(2):216-28. doi: 10.14336/AD.2020.0228, PMID 32257537.

Liang B, Chen J, Li T, Wu H, Yang W, Li Y. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells: A case report. Medicine (Baltimore). 2020;99(31):e21429. doi: 10.1097/MD.0000000000021429, PMID 32756149.

Thompson BT. Glucocorticoids and acute lung injury. Crit Care Med. 2003;31(4)Suppl:S253-S257. doi: 10.1097/01.CCM.0000057900.19201.55. PMID 12682449.

Monton C, Ewig S, Torres A, El-Ebiary M, Filella X, Rano A. Role of glucocorticoids on inflammatory response in non immunosuppressed patients with pneumonia: a pilot study. Eur Respir J. 1999;14(1):218-20. doi: 10.1034/j.1399-3003.1999.14a37.x.x. PMID 10489855.

Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17(4):233-47. doi: 10.1038/nri.2017.1, PMID 28192415.

Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoOS Med. 2006;3(9):e343. doi: 10.1371/journal.pmed.0030343. PMID 16968120.

Chen RC, Tang XP, Tan SY, Liang BL, Wan ZY, Fang JQ. Treatment of severe acute respiratory syndrome with glucosteroids: the Guangzhou experience. Chest. 2006;129(6):1441-52. doi: 10.1378/chest.129.6.1441, PMID 16778260.

Sung JJ, Wu A, Joynt GM, Yuen KY, Lee N, Chan PK. Severe acute respiratory syndrome: report of treatment and outcome after a major outbreak. Thorax. 2004;59(5):414-20. doi: 10.1136/thx.2003.014076, PMID 15115870.

University of Oxford. Low-cost dexamethasone reduces death by up to one-third in hospitalised patients with severe respiratory complications of COVID-19 [internet]. UK: University of Oxford; 2020. Available from: https://www.ox.ac.uk/news/2020-06-16-low-cost-dexamethasone-reduces-death-one-third-hospitalised-patients-severe. [Last accessed on 23 Jun 2020]

Wang Y, Jiang W, He Q, Wang C, Wang B, Zhou P. Early, low-dose and short-term application of corticosteroid treatment in patients with severe COVID-19 pneumonia: single-center experience from Wuhan, China. medRxiv; 2020. doi: 10.1101/2020.03.06.20032342.

Fadel R, Morrison AR, Vahia A, Smith ZR, Chaudhry Z, Bhargava P. Early short-course corticosteroids in hospitalized patients with COVID-19. Clin Infect Dis. 2020;71(16):2114-20. doi: 10.1093/cid/ciaa601, PMID 32427279.

Corral Gudino L, Bahamonde A, Arnaiz Revillas F, Gomez Barquero J, Abadia Otero J, Garcia Ibarbia C. Methylprednisolone in adults hospitalized with COVID-19 pneumonia: an open-label randomized trial (GLUCOCOVID). Wien Klin Wochenschr. 2021;133(7-8):303-11. doi: 10.1007/s00508-020-01805-8.

Sun F, Kou H, Wang S, Lu Y, Zhao H, Li W. Medication patterns and disease progression among 165 patients with coronavirus disease 2019 (COVID-19) in Wuhan, China: A single-centered, retrospective, observational study; 2019. doi: 10.2139/ssrn.3551323.

Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473-5. doi: 10.1016/S0140-6736(20)30317-2.

Keller MJ, Kitsis EA, Arora S, Chen JT, Agarwal S, Ross MJ. Effect of systemic glucocorticoids on mortality or mechanical ventilation in patients with COVID-19. J Hosp Med. 2020;15(8):489-93. doi: 10.12788/jhm.3497, PMID 32804611.

Yang Z, Liu J, Zhou Y, Zhao X, Zhao Q, Liu J. The effect of corticosteroid treatment on patients with coronavirus infection: a systematic review and meta-analysis. J Infect. 2020;81(1):e13-20. doi: 10.1016/j.jinf.2020.03.062, PMID 32283144.

Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014;32:513-45. doi: 10.1146/annurev-immunol-032713-120231, PMID 24555472.

Arabi YM, Shalhoub S, Mandourah Y, Al-Hameed F, Al-Omari A, Al- Qasim E. Ribavirin and interferon therapy for critically ill patients with Middle East respiratory syndrome: A multicenter observational study. Clin Infect Dis. 2020;70(9):1837-44. doi: 10.1093/cid/ciz544, PMID 31925415.

Omrani AS, Saad MM, Baig K, Bahloul A, Abdul-Matin M, Alaidaroos AY. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis. 2014;14(11):1090-5. doi: 10.1016/S1473-3099(14)70920-X, PMID 25278221.

Shalhoub S, Farahat F, Al-Jiffri A, Simhairi R, Shamma O, Siddiqi N. IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study. J Antimicrob Chemother. 2015;70(7):2129-32. doi: 10.1093/jac/dkv085, PMID 25900158.

Wong SS, Yuen KY. The management of coronavirus infections with particular reference to SARS. J Antimicrob Chemother. 2008;62(3):437-41. doi: 10.1093/jac/dkn243, PMID 18565970.

Loutfy MR, Blatt LM, Siminovitch KA, Ward S, Wolff B, Lho H. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study. JAMA. 2003;290(24):3222-8. doi: 10.1001/jama.290.24.3222, PMID 14693875.

Davoudi Monfared E, Rahmani H, Khalili H, Hajiabdolbaghi M, Salehi M, Abbasian L. A randomized clinical trial of the efficacy and safety of interferon β-1a in treatment of severe COVID-19. Antimicrob Agents Chemother. 2020;64(9):e01061-20. doi: 10.1128/AAC.01061-20, PMID 32661006.

Zhou Q, Chen V, Shannon CP, Wei XS, Xiang X, Wang X. Interferon-α2b treatment for COVID-19. Front Immunol. 2020;11:1061. doi: 10.3389/fimmu.2020.01061, PMID 32574262.

Hung IF, Lung KC, Tso EY, Liu R, Chung TW, Chu MY. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695-704. doi: 10.1016/S0140-6736(20)31042-4, PMID 32401715.

Meng Z, Wang T, Chen L, Chen X, Li L, Qin X. The effect of recombinant human interferon alpha nasal drops to prevent COVID-19 pneumonia for medical staff in an epidemic area. Curr Top Med Chem. 2021;21(10):920-7. doi: 10.2174/1568026621666210429083050. PMID 33970846.

Idelsis EM, Jesus PE, Yaquelin DR, Dania VB, Monica BR, Lisandra BR. Effect and safety of combination of interferon alpha-2b and gamma or interferon alpha-2b for negativization of SARS-CoV-2 viral RNA. Preliminary results of a randomized controlled clinical trial. medRxiv; 2020. doi: 10.1101/2020.07.29.20164251.

Winthrop KL, Mariette X, Silva JT, Benamu E, Calabrese LH, Dumusc A. ESCMID study group for infections in compromised hosts (ESGICH) consensus document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors). Clin Microbiol Infect. 2018;24Suppl 2:S21-S40. doi: 10.1016/j.cmi.2018.02.002, PMID 29447987.

Shakoory B, Carcillo JA, Chatham WW, Amdur RL, Zhao H, Dinarello CA. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior Phase III trial. Crit Care Med. 2016;44(2):275-81. doi: 10.1097/CCM.0000000000001402, PMID 26584195.

Monteagudo LA, Boothby A, Gertner E. Continuous intravenous anakinra infusion to calm the cytokine storm in macrophage activation syndrome. ACR Open Rheumatol. 2020;2(5):276-82. doi: 10.1002/acr2.11135, PMID 32267081.

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. doi: 10.1016/S0140-6736(20)30628-0, PMID 32192578.

Aouba A, Baldolli A, Geffray L, Verdon R, Bergot E, Martin-Silva N. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: case series. Ann Rheum Dis. 2020;79(10):1381-2. doi: 10.1136/annrheumdis-2020-217706, PMID 32376597.

Cavalli G, De Luca G, Campochiaro C, Della Torre E, Ripa M, Canetti D. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2(6):e325-e331. doi: 10.1016/S2665-9913(20)30127-2, PMID 32501454.

Xu X, Han M, Li T, Sun W, Wang D, Fu B. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117(20):10970-5. doi: 10.1073/pnas.2005615117, PMID 32350134.

Sciascia S, Apra F, Baffa A, Baldovino S, Boaro D, Boero R. Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in patients with severe COVID-19. Clin Exp Rheumatol. 2020;38(3):529-32. PMID 32359035.

Guaraldi G, Meschiari M, Cozzi Lepri A, Milic J, Tonelli R, Menozzi M. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. 2020;2(8):e474-e484. doi: 10.1016/S2665-9913(20)30173-9, PMID 32835257.

Rhee VFvan Rhee F, Wong RS, Munshi N, Rossi JF, Ke XY, Fossa A. Siltuximab for multicentric Castleman'’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2014;15(9):966-74. doi: 10.1016/S1470-2045(14)70319-5, PMID 25042199.

Gritti G, Raimondi F, Ripamonti D, Riva I, Landi F, Alborghetti L. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv; 2020. doi: 10.1101/2020.04.01.20048561.

Regeneron. Regeneron and Sanofi provide update on U.S. Phase 2/3 adaptive-designed trial of KEVZARA® (sarilumab) in hospitalized COVID-19 patients; 2020.

Wang M, Rule S, Zinzani PL, Goy A, Casasnovas O, Smith SD. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial. Lancet. 2018;391(10121):659-67. doi: 10.1016/S0140-6736(17)33108-2, PMID 29241979.

Roschewski M, Lionakis MS, Sharman JP, Roswarski J, Goy A, Monticelli MA. Inhibition of bruton tyrosine kinase in patients with severe COVID-19. Sci Immunol. 2020;5(48):eabd0110. doi: 10.1126/sciimmunol.abd0110. PMID 32503877.

Treon SP, Castillo JJ, Skarbnik AP, Soumerai JD, Ghobrial IM, Guerrera ML. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19-infected patients. Blood. 2020;135(21):1912-5. doi: 10.1182/blood.2020006288, PMID 32302379.

Dougados M, van der Heijde DVD, Chen YC, Greenwald M, Drescher E, Liu J. Baricitinib in patients with inadequate response or intolerance to conventional synthetic DMARDs: results from the RA-BUILD study. Ann Rheum Dis. 2017;76(1):88-95. doi: 10.1136/annrheumdis-2016-210094, PMID 27689735.

Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20(4):400-2. doi: 10.1016/S1473-3099(20)30132-8, PMID 32113509.

Genovese MC, Kremer J, Zamani O, Ludivico C, Krogulec M, Xie L. Baricitinib in patients with refractory rheumatoid arthritis. N Engl J Med. 2016;374(13):1243-52. doi: 10.1056/NEJMoa1507247, PMID 27028914.

Smolen JS, Genovese MC, Takeuchi T, Hyslop DL, Macias WL, Rooney T. Safety profile of baricitinib in patients with active rheumatoid arthritis with over 2 years median time in treatment. J Rheumatol. 2019;46(1):7-18. doi: 10.3899/jrheum.171361, PMID 30219772.

Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395(10223):e30-e31. doi: 10.1016/S0140-6736(20)30304-4, PMID 32032529.

Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020;81(2):318-56. doi: 10.1016/j.jinf.2020.04.017, PMID 32333918.

Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol. 2020;146(1):137-146.e3. doi: 10.1016/j.jaci.2020.05.019, PMID 32470486.

Rosee LFLa Rosee F, Bremer HC, Gehrke I, Kehr A, Hocchhaus A, Birndt S. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia. 2020;34(7):1805-15. doi: 10.1038/s41375-020-0891-0, PMID 32518419.

US Food and Drug Administration. FDA approves first treatment for COVID-19. US FDA; 2020.

National Institute of Health. NIH clinical trial testing remdesivir plus interferon beta-1a for COVID-19 treatment begins; 2020.

Clinical Trials. gov. Ibrutinib for the treatment of COVID-19; 2020. Patients requiring hospitalization. US Clinical Trials. gov. Available from: https://clinicaltrials.gov/ct2/show/NCT04439006. [Last accessed on Sep 26 2020].

Clinical Trials. gov. Study of oral ibrutinib capsules to assess respiratory failure in adult participants with severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) and pulmonary Injury (iNSPIRE); 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04375397. [Last accessed on 26 Mar 2021].

Clinical Trials. gov. Ruxolitinib in Covid-19 Patients with defined hyperinflammation (RuxCoFlam); 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04338958. [Last accessed on 30 Mar 2021]

National Institutes of Health. NIH clinical trial testing antiviral remdesivir plus anti-inflammatory drug baricitinib for COVID-19 begins; 2020. Available from: https://www.nih.gov/news-events/news-releases/nih-clinical-trial-testing-antiviral-remdesivir-plus-anti-inflammatory-drug-baricitinib-covid-19-begins. Us NIH. [Last accessed on 02 Sep 2020]

Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. doi: 10.1186/1743-422X-2-69, PMID 16115318.

Ministry of Health and Family Welfare. Revised Advisory on the Use of hydroxychloroquine (HCQ) as prophylaxis for COVID-19 Infection (in supersession of previous advisory dated 23rd March (2020). New Delhi (Asia) Ministry of Health and Family Welfare; 2020 Available from: https://www.mohfw.gov.in/pdf/RevisedadvisoryontheuseofhydroxychloroquineasprophylaxisforSARSCOVID19infection.pdf. [ Last accessed on 20 Apr 2020]

Gielen V, Johnston SL, Edwards MR. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J. 2010;36(3):646-54. doi: 10.1183/09031936.00095809, PMID 20150207.

Culic O, Erakovic V, Cepelak I, Barisic K, Brajsa K, Ferencic Z. Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol. 2002;450(3):277-89. doi: 10.1016/s0014-2999(02)02042-3, PMID 12208321.

Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J, Tesoriero J. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA. 2020;323(24):2493-502. doi: 10.1001/jama.2020.8630, PMID 32392282.

Choy KT, Wong AY, Kaewpreedee P, Sia SF, Chen D, Hui KPY. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020;178:104786. doi: 10.1016/j.antiviral.2020.104786. PMID 32251767.

Nukoolkarn V, Lee VS, Malaisree M, Aruksakulwong O, Hannongbua S. Molecular dynamic simulations analysis of ritonavir and lopinavir as SARS-CoV 3CL (pro) inhibitors. J Theor Biol. 2008;254(4):861-7. doi: 10.1172016/JCI140j.jtbi.2008.07.030, PMID 18706430.

Joyner MJ, Wright RS, Fairweather D, Senefeld JW, Bruno KA, Klassen SA. Early safety indicators of COVID-19 convalescent plasma in 5000 patients. J Clin Invest 2020;130(9):4791-7. doi: 10.1172/JCI140200.

Lu X, Chen T, Wang Y, Wang J, Yan F. Adjuvant corticosteroid therapy for critically ill patients with COVID‐19. Crit Care. 2020;24(1):241. doi: 10.1186/s13054-020-02964-w, PMID 32430057.

Mammen MJ, Aryal K, Alhazzani W, Alexander PE. Corticosteroids for patients with acute respiratory distress syndrome: a systematic review and meta-analysis of randomized trials. Pol Arch Intern Med. 2020;130(4):276-86. doi: 10.20452/pamw.15239, PMID 32186831.

Villar J, Ferrando C, Martinez D, Ambros A, Munoz T, Soler JA. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8(3):267-76. doi: 10.1016/S2213-2600(19)30417-5, PMID 32043986.

Horby P, Lim WS, Emberson JR, Mafham M, Bell JL. Dexamethasone in hospitalized patients with covid-19-preliminary. N Engl J Med. 2020;384:693-704.

Confalonieri M, Urbino R, Potena A, Piattella M, Parigi P, Puccio G. Hydrocortisone infusion for severe community-acquired pneumonia: a preliminary randomized study. Am J Respir Crit Care Med. 2005;171(3):242-8. doi: 10.1164/rccm.200406-808OC, PMID 15557131.

Sichitiu J, Fakhouri F, Desseauve D. Antenatal corticosteroid therapy and COVID-19: pathophysiological considerations. Acta Obstet Gynecol Scand. 2020;99(7):952. doi: 10.1111/aogs.13887, PMID 32356302.

Mantlo E, Bukreyeva N, Maruyama J, Paessler S, Huang C. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 2020;179:104811. doi: 10.1016/j.antiviral.2020.104811. PMID 32360182.

Shen KL, Yang YH. Diagnosis and treatment of 2019 novel coronavirus infection in children: a pressing issue. World J Pediatr. 2020;16(3):219-21. doi: 10.1007/s12519-020-00344-6, PMID 32026147.

Ranieri VM, Pettila V, Karvonen MK, Jalkanen J, Nightingale P, Brealey D. Effect of intravenous interferon β-1a on death and days free from mechanical ventilation among patients with moderate to severe acute respiratory distress syndrome: A randomized clinical trial. JAMA. 2020;323(8):725-33. doi: 10.1001/jama.2019.22525, PMID 32065831.

Kiss J, Yegutkin GG, Koskinen K, Savunen T, Jalkanen S, Salmi M. IFN-beta protects from vascular leakage via up-regulation of CD73. Eur J Immunol. 2007;37(12):3334-8. doi: 10.1002/eji.200737793, PMID 18034430.

Aeffner F, Woods PS, Davis IC. Activation of A1-adenosine receptors promotes leukocyte recruitment to the lung and attenuates acute lung injury in mice infected with influenza A/WSN/33 (H1N1) virus. J Virol. 2014;88(17):10214-27. doi: 10.1128/JVI.01068-14, PMID 24965449.

Lang DA, Osterhaus AD, Haagmans BL. Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2. In: Vero E6 cells. Virol 2006;353(2):474-81. doi: 10.1016/j.virol.2006.06.011.

Huet T, Beaussier H, Voisin O, Jouveshomme S, Dauriat G, Lazareth I. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020;2(7):e393-e400. doi: 10.1016/S2665-9913(20)30164-8, PMID 32835245.

Kewan T, Covut F, Al-Jaghbeer MJ, Rose L, Gopalakrishna KV, Akbik VB. Tocilizumab for treatment of patients with severe COVID-19: A retrospective cohort study. Clinical Medicine. 2020;24:100418. doi: 10.1016/j.eclinm.2020.100418. PMID 32766537.

Worldpharmanews. Sanofi and Regeneron provide update on Kevzara® (sarilumab) Phase 3 U.S. trial in COVID-19 patients; 2020. Available from: https://www.worldpharmanews.UKworldpharmanews.com. [Last accessed on 20 Aug 2020]

Favalli EG, Biggioggero M, Maioli G, Caporali R. Baricitinib for COVID-19: a suitable treatment? Lancet Infect Dis. 2020 2020;20(9):1012-3. doi: 10.1016/S1473-3099(20)30262-0, PMID 32251638.

Published

01-11-2022

How to Cite

PRASAD, N., and D. PRASAD. “COMPREHENSIVE THERAPEUTIC INTERVENTIONS AGAINST SARS-COV-2: A REVIEW AND PROSPECTIVE”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 14, no. 11, Nov. 2022, pp. 1-12, doi:10.22159/ijpps.2022v14i11.46171.

Issue

Section

Review Article(s)