• UCHENNA CHRISTIAN OKOYE Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Benin, Benin City 300001 Nigeria
  • AUGUSTINE O. OKHAMAFE Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Benin, Benin City 300001 Nigeria
  • MATTHEW IKHUORIA ARHEWOH Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Benin, Benin City 300001 Nigeria



Nanoparticles, Green synthesis, Vernonia amygdalina, Plant extract, Antibacterial, Antifungal


Objective: This research was carried out to synthesize and characterize copper oxide nanoparticles (CuONPs) using Vernonia amygdalina leaf extract and investigate the in vitro antimicrobial properties using clinical microbial isolates.

Methods: The CuONPs were synthesized by heating a mixture of copper sulfate pentahydrate and V. amygdalina aqueous extract. The CuONPs were characterized by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and particle size analysis. Phytochemical analysis of V. amygdalina was carried out to determine the bio-molecules that served as a reducing agent during the synthesis of CuONPs. The antimicrobial activities of CuONPs and V. amygdalina were evaluated by the agar disc diffusion method against Staphylococcus aureus, Escherichia coli, and Candida albicans. Ampicillin and fluconazole were used as reference antibacterial and antifungal agents, respectively.

Results: The nanoparticles were in the nanometer dimension and exhibited significant antimicrobial activity (P<0.05) against the tested microbes. However, the standard antibacterial drug, ampicillin, showed higher antibacterial activity against S. aureus and E. coli with the inhibition zone diameter of (IZD) of 13.10±0.38 mm and 11.80±0.12 mm, respectively. Fluconazole had no antifungal activity against C. albicans while V. amygdalina demonstrated good antibacterial activity against S. aureus and E. coli but lacked antifungal activity against C. albicans. However, the combination of CuONPs and plant extract exhibited significant antifungal activity with an IZD of 10.37±0.72 mm.

Conclusion: An eco-friendly, simple, reproducible, and economical CuONPs have been synthesized using V. amygdalina leaf extract. The findings indicate that CuONPs could be used as an antimicrobial agent.


Download data is not yet available.


Dhand C, Dwivedi N, Loh XJ, Jie Ying ANJ, Verma NK, Beuerman RW. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv. 2015;5(127):105003-37. doi: 10.1039/C5RA19388E.

Wu S, Rajeshkumar S, Madasamy M, Mahendran V. Green synthesis of copper nanoparticles using Cissus vitiginea and its antioxidant and antibacterial activity against urinary tract infection pathogens. Artif Cells Nanomed Biotechnol. 2020;48(1):1153-8. doi: 10.1080/21691401.2020.1817053, PMID 32924614.

Ijaz F, Shahid S, Khan SA, Ahmad W, Zaman S. Green synthesis of copper oxide nanoparticles using abutilon indicum leaf extract: antimicrobial, antioxidant and photocatalytic dye degradation activitie. Trop J Pharm Res. 2017;16(4):743-53. doi: 10.4314/tjpr.v16i4.2.

Egharevba C. Significance of bitter leaf (Vernonia Amagdalina) in tropical diseases and beyond: a review. Malaria Contr Elimination. 2014;03(1). doi: 10.4172/2090-2778.1000120.

Ayoola GA, Coker HAB, Adesegun SA, Adepoju Bello AA, Obaweya K, Ezennia EC. Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Trop J Pharm Res. 2008;7(3):1019-24.

Dahiru D, Onubiyi JA, Umaru HA. Phytochemical screening and antiulcerogenic effect of Moringa oleifera aqueous leaf extract. Afr J Trad Compl Alt Med. 2006;3(3):70-5. doi: 10.4314/ajtcam.v3i3.31167.

Banu S, Cathrine L. General techniques involved in phytochemical analysis. Int J Adv Res Chem Sci. 2015;2(4):25-32.

Jozanikohan G, Abarghooei MN. The fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir. J Petrol Explor Prod Technol. 2022;12(8):2093-106. doi: 10.1007/s13202-021-01449-y.

Nandiyanto ABD, Oktiani R, Ragadhita R. How to read and interpret FTIR spectroscope of organic material. Indonesian J Sci Technol. 2019;4(1):97-118. doi: 10.17509/ijost.v4i1.15806.

Wendorf J, Chesko J, Kazzaz J, Ugozzoli M, Vajdy M, O’Hagan D. A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum Vaccin. 2008;4(1):44-9. doi: 10.4161/hv.4.1.4886, PMID 18438105.

Ardani HK, Imawan C, Handayani W, Djuhana D, Harmoko A, Fauzia V. Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of Diospyros discolor willd. leaves using polyvinyl alcohol. IOP Conf Ser.: Mater Sci Eng. 2017;188(1):1-5. doi: 10.1088/1757-899X/188/1/012056.

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani FH, Javanmard R, Dokhani A. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):1-18. doi: 10.3390/pharmaceutics10020057.

Anant JK, Inchulkar DR, Bhagat S. An overview of copper toxicity relevance to public health. European J Pharm Med Res. 2018;5(11):232-7.

Altikatoglu M, Attar A, Erci F, Cristache CM, Isildak I. Green synthesis of copper oxide nanoparticles using Ocimum basilicum extract and their antibacterial activity. Fresenius Environ Bull. 2017;26(12):7832-7.

Naika HR, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Univ Sci. 2015;9(1):7-12. doi: 10.1016/j.jtusci.2014.04.006.

Yang XY, Chung E, Johnston I, Ren G, Cheong Y. Exploitation of antimicrobial nanoparticles and their applications in biomedical. J Eng Appl Sci. 2021:1-21.

Oussou Azo AF, Nakama T, Nakamura M, Futagami T, Vestergaard MCM. Antifungal potential of nanostructured crystalline copper and its oxide forms. Nanomaterials (Basel). 2020;10(5):1-13. doi: 10.3390/nano10051003, PMID 32456302.

Gomes IB, Simoes LC, Simoes M. Influence of surface copper content on Stenotrophomonas maltophilia biofilm control using chlorine and mechanical stress. Biofouling. 2020;36(1):1-13. doi: 10.1080/08927014.2019.1708334. PMID 31997661.

Hu Z, He B, Ma L, Sun Y, Niu Y, Zeng B. Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae. Indian J Microbiol. 2017;57(3):270-7. doi: 10.1007/s12088-017-0657-1, PMID 28904410.

Agah MV, Nweze E, Nworie O, Nwani CD. Antifungal activity of some selected plant extracts, Nigeria. Asian J Microbiol Biotechnol Environ Sci. 2011;13(1):87-9.

Owoyale ADM, Galadimma M, Daniyan SY, Adabara N. Quantitative phytochemical analysis and antifungal susceptibility of Vernonia amygdalina against some strains of Candida albicans. JAMPS. 2019;21(3):1-13. doi: 10.9734/jamps/2019/v21i330132.

Ogundare AO. Antibacterial properties of the leaf extracts of Vernonia amygdalina, Ocimum gratissimum, Corchorous olitorius and Manihot palmate. J Microbiol Antimicrob. 2011;3(4):77-86.

Habtamu A, Melaku Y. Antibacterial and antioxidant compounds from the flower extracts of Vernonia amygdalina. Adv Pharmacol Sci. 2018;2018:4083736. doi: 10.1155/2018/4083736, PMID 29755517.

Ali M, Diso SU, Waiya SA, Abdallah MS. Phytochemical screening and antibacterial activity of bitter leaf (Vernonia amygdalina). Ann Microbiol Infect Dis. 2019;2(4):1-7.

Anibijuwon II, Oladejo BO, Adetitun DO, Kolawole OM. Antimicrobial activities of Vernonia amygdalina against oral microbes. Glob J Pharmacol. 2012;6(3):178-85. doi: 10.5829/idosi.gjp.2012.6.3.6517.

Mazgaeen L, Gurung P. Recent advances in lipopolysaccharide recognition systems. Int J Mol Sci. 2020;21(2):1-18. doi: 10.3390/ijms21020379, PMID 31936182.

Pancu DF, Scurtu A, Macasoi IG, Marti D, Mioc M, Soica C. Antibiotics: conventional therapy and natural compounds with antibacterial activity-a Pharmaco Toxicological Screening. Antibiotics. 2021;10(4):1-35. doi: 10.3390/antibiotics10040401.

Tripathi KD. Essentials of medical pharmacology. 6th ed. India: Jaypee Brothers Medical Publishers (P) Ltd; 2006. p. 55-6.

Caesar LK, Cech NB. Synergy and antagonism in natural product extracts: when 1+1 does not equal 2. Nat Prod Rep. 2019;36(6):869-88. doi: 10.1039/c9np00011a, PMID 31187844.

Zhang Y, Wang L, Xu X, Li F, Wu Q. Combined systems of different antibiotics with Nano-CuO against Escherichia coli and the mechanisms involved. Nanomedicine (Lond). 2018;13(3):339-51. doi: 10.2217/nnm-2017-0290, PMID 29338613.

Murugan S. Investigation of the synergistic antibacterial action of copper nanoparticles on certain antibiotics against human pathogens. Int J Pharm Pharm Sci. 2018;10(10):83-6. doi: 10.22159/ijpps.2018v10i10.28069.

Ocampo PS, Lazar V, Papp B, Arnoldini M, Abel zur Wiesch PAZ, Busa Fekete R. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob Agents Chemother. 2014;58(8):4573-82. doi: 10.1128/AAC.02463-14, PMID 24867991.

Longhi C, Santos JP, Morey AT, Marcato PD, Duran N, Pinge Filho P. Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans. Med Mycol. 2016;54(4):428-32. doi: 10.1093/mmy/myv036, PMID 26092103.



How to Cite

OKOYE, U. C., A. O. OKHAMAFE, and M. I. ARHEWOH. “BIOSYNTHESIS OF COPPER OXIDE NANOPARTICLES AND EVALUATION OF THEIR ANTIMICROBIAL PROPERTIES”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 15, no. 5, May 2023, pp. 8-15, doi:10.22159/ijpps.2023v15i5.46635.



Original Article(s)