• RIDDHI PATEL N. R. Vekaria institute of Pharmacy, Junagadh, Gujarat, India
  • T. Y. PASHA Sri Adichunchanagiri College of Pharmacy, B G Nagara, Nagamangala Taluk Mandya, Karnataka, 571448, India
  • SANDIP PATEL N. R. Vekaria institute of Pharmacy, Junagadh, Gujarat, India




2D-QSAR, Antifungal agents, Dihydropyrimidine


Objective: The present study was designed to study the antifungal activity of Dihydropyrimidine-4-Carbonitrile analogs against the fungi Candida albicans by a 2D quantitative structure-activity relationship (QSAR) model.

Methods: The pyrimidine derivatives were produced using lipophilic, electronic, and steric parameters by Quantitative Structure Activity-Relationships (QSAR). A relationship between dependent and independent variables (biological activities and physicochemical descriptors, respectively) was resolved statistically using regression analysis. The F value shows the level of statistical significance of the regression (r2) was used to report the fitness of data. The newly synthesized derivatives were evaluated for in vitro antifungal activity against Candida albicansby Nutrient agar and Seaboard dextrose agar media.

Results: Multiple linear regression is a method of crucial importance, it allowed us to obtain a relation between the calculated parameters and the antifungal activity; this we can interpret the variance of the activity by contribution to the calculated descriptors. Quantitative structure-activity relationship (QSAR) model showing a significant activity-descriptors relationship accuracy of 90% (R2 ≥ 0.90) and activity prediction accuracy of 81% (R²cv = 0.81). These values prove that the model obtained is reliable. Out of the three descriptors studied; log P has minimum potency, molar refractivity has more potency and heat of formation has moderate potency.

Conclusion: Important structural understanding in the pattern of potent antifungal agents by Quantitative Structure Activity-Relationships (QSAR) study. The acquired physicochemical properties (electronic, topological, and steric) show the important structural features required for antifungal activity against Candida albicans.


Download data is not yet available.


Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016;4(2):VMBF-0016. doi: 10.1128/ microbiolspec.VMBF-0016-2015, PMID 27227291.

Vallabhaneni S, Kallen A, Tsay S, Chow N, Welsh R, Kerins J. Investigation of the first seven reported cases of candida auris, a globally emerging invasive, multidrug-resistant Fungus-United States, May 2013-August 2016. Am J Transplant. 2017;17(1):296-9. doi: 10.1111/ajt.14121, PMID 28029734.

Miller CD, Lomaestro BW, Park S, Perlin DS. Progressive esophagitis caused by candida albicans with reduced susceptibility to caspofungin. Pharmacotherapy. 2006;26(6):877-80. doi: 10.1592/phco.26.6.877, PMID 16716141.

Kontoyiannis DP, Lewis RE. Antifungal drug resistance of pathogenic fungi. Lancet. 2002;359(9312):1135-44. doi: 10.1016/S0140-6736(02)08162-X.

Ryder NS. Activity of terbinafine against serious fungal pathogens. Mycoses. 1999;42Suppl 2:115-9. doi: 10.1111/j.1439-0507.1999.tb00026.x, PMID 10865917.

Perlin DS. Resistance to echinocandin-class antifungal drugs. Drug Resist Updat. 2007;10(3):121-30. doi: 10.1016/j.drup.2007.04.002. PMID 17569573.

Padmaja A, Payani T, Reddy GD, Padmavathi V. Synthesis, antimicrobial and antioxidant activities of substituted pyrazoles, isoxazoles, pyrimidine and thioxopyrimidine derivatives. Eur J Med Chem. 2009 Nov;44(11):4557-66. doi: 10.1016/j.ejmech.2009.06.024, PMID 19631423.ejmech.2009.06.024.

Smee DF, Mckernan PA, Nord LD, Willis RC, Petrie CR, Riley TM. Novel pyrazolo[3,4-d]pyrimidine nucleoside analog with broad-spectrum antiviral activity. Antimicrob Agents Chemother. 1987;31(10):1535-41. doi: 10.1128/AAC.31.10.1535, PMID 3435102.

Smee DF, Alaghamandan HA, Cottam HB, Sharma BS, Jolley WB, Robins RK. Broad-spectrum in vivo antiviral activity of 7-Thia-8-Oxoguanosine, a novel immunopotentiating agent. Antimicrob Agents Chemother. 1989;33(9):1487-92. doi: 10.1128/AAC.33.9.1487, PMID 2817849.

Soni HM, Patel PK, Chhabria MT, Rana DN, Mahajan BM, Brahmkshatriya PS. 2D-QSAR study of a series of pyrazoline-based anti-tubercular agents using genetic function approximation. Comp Chem. 2015;03(4):45-53. doi: 10.4236/cc.2015.34006.

Singh P, Kumar R, Sharma BK. Quantitative structure-activity relationship study of 5-iodo- and diaryl-analogs of tubercidin: inhibitors of adenosine kinase. J Enzyme Inhib Med Chem. 2003;18(5):395-402. doi: 10.1080/1475636031000121910, PMID 14692505.

Hansch C, Rockwell SD, Jow PY, Leo A, Steller EE. Substituent constants for correlation analysis. J Med Chem. 1977;20(2):304-6. doi: 10.1021/jm00212a024. PMID 836503.

Fernandes CJ, Stevens DA, Groot obbink DJ, Ackerman VP. A replicator method for the combined determination of minimum inhibitory concentration and minimum bactericidal concentration. J Antimicrob Chemother. 1985 Jan;15(1):53-60. doi: 10.1093/jac/15.1.53, PMID 3972758.

Bamnela R, Shrivastava SP. Synthesis and in vitro antimicrobial, anthelmintic and insecticidal activities study of 4(4′-bromophenyl)-6-substituted-aryl-1-acetyl pyrimidine-2-thiols. E-Journal of Chemistry. 2010;7(3):935-41. doi: 10.1155/2010/927601.

Sharma MC, Sahu NK, Kohali DV, Chaturvedi SC, Sharma S. QSAR, synthesis and biological activity studies of some thiazolidinones derivatives. Dig J Nanomater Biostructures. 2009 Mar;4(1):223-32.

Cai Z, Zafferani M, Akande OM, Hargrove AE. Quantitativestructure–activity relationship (QSAR) study predicts small-molecule binding to RNA structure. J Med Chem. 2022;65(10):7262-77. doi: 10.1021/acs.jmedchem.2c00254. PMID 35522972.

Podunavac Kuzmanovic SO, Cvetkovic DD, Barna DJ. QSAR analysis of 2-amino or 2-methyl-1-substituted benzimidazoles against pseudomonas aeruginosa. Int J Mol Sci. 2009;10(4):1670-82. doi: 10.3390/ijms10041670, PMID 19468332.

Dwivedi N, Mishra BN, Katoch VM. 2D-QSAR model development and analysis on variant groups of anti-tuberculosis drugs. Bioinformation. 2011;7(2):82-90. doi: 10.6026/97320630007082, PMID 21938210.

Le T, Epa VC, Burden FR, Winkler DA. Quantitative structure-property relationship modeling of diverse materials properties. Chem Rev. 2012;112(5):2889-919. doi: 10.1021/cr200066h, PMID 22251444.

Echeverria J, Opazo J, Mendoza L, Urzua A, Wilkens M.Structure–activity and lipophilicity relationships of selected antibacterial natural flavones and flavanones of Chilean flora. Molecules. 2017 Apr;22(4):608. doi: 10.3390/molecules22040608, PMID 28394271.

Kesar S, Paliwal SK, Mishra P, Chauhan M. Quantitative structure-activity relationship analysis of selective rho kinase inhibitors as neuro-regenerator agents. Turk J Pharm Sci. 2019 Jun;16(2):141-54. doi: 10.4274/tjps.galenos.2018.70288. PMID 32454707.

Shahlaei M. Descriptor selection methods in quantitative structure−activity relationship studies: a review study. Chem Rev. 2013;113(10):8093-103. doi: 10.1021/cr3004339, PMID 23822589.

Sharma P, Rane N, Gurram VK. Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents. Bioorg Med Chem Lett. 2004;14(16):4185-90. doi: 10.1016/j.bmcl.2004.06.014, PMID 15261267.

Bhaskar PV, Ramachandraiah A. Synthesis, spectral and molecular modeling studies of coumarin derivatives. Int J Curr Pharm Sci 2017;9(3). doi: 10.22159/ijcpr.2017.v9i3.19984.



How to Cite

PATEL, R., T. Y. PASHA, and S. PATEL. “2D-QSAR STUDY ON SOME NOVEL DIHYDROPYRIMIDINE-4-CARBONITRILE ANALOGS AS AN ANTIFUNGAL ACTIVITY”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 15, no. 3, Mar. 2023, pp. 29-34, doi:10.22159/ijpps.2023v15i3.47008.



Original Article(s)