UNLOCKING THE THERAPEUTIC POTENTIAL: EXPLORING NF-κB AS A VIABLE TARGET FOR DIVERSE PHARMACOLOGICAL APPROACHES

Authors

  • AJEET PAL SINGH NIMS Institute of Pharmacy, NIMS University, Jaipur-303121, Rajasthan, India and St. Soldier Institute of Pharmacy, Jalandhar-144011, Punjab, India
  • ASHISH KUMAR SHARMA NIMS Institute of Pharmacy, NIMS University, Jaipur-303121, Rajasthan, India https://orcid.org/0000-0003-0742-8555
  • THAKUR GURJEET SINGH Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India https://orcid.org/0000-0003-2979-1590

DOI:

https://doi.org/10.22159/ijpps.2024v16i6.49530

Keywords:

NF- κB, Canonical pathway, Non-canonical pathway, Autoimmune disorder and Inflammatory conditions

Abstract

NF-κB is a vital transcription factor that responds to diverse stimuli like cytokines, infections, and stress. It forms different dimers, binds to specific DNA sequences, and regulates gene expression. It operates through two pathways: canonical (for inflammation and immunity) and non-canonical (for specific processes). These pathways tightly control activity of NF-κB and impacting gene expression. Aberrant NF-κB activation is linked to cancer and other diseases, making it a potential therapeutic target. This review explores the role of NF-κB in disease and its therapeutic potential in various conditions. Intricate signal transduction processes lead to NF-κB activation by phosphorylating IκB proteins, allowing NF-κB dimers to enter the nucleus and influence gene expression. This dynamic regulation involves co-activators and interactions with other transcription factors, shaping complex gene expression programs.

Understanding the multifaceted functions off NF-κB is crucial as its deregulation is associated with a range of diseases, including cancer, autoimmune disorders, and inflammatory conditions. Exploring recent studies offers insights into potential therapeutic strategies aimed at modulating NF-κB activity to restore health and combat various pathological conditions. This Comprehensive review is based on the role of NF-κB in disease pathogenesis and therapeutic implications.

Downloads

Download data is not yet available.

References

K. Ichikawa, D. Ohshima, and H. Sagara, “Regulation of signal transduction by spatial parameters : a case in NF – κ B oscillation,” Inst. Eng. Technol. Syst. Biol., no. August 2013, pp. 41–51, 2015, doi: 10.1049/iet-syb.2013.0020.

S. Mitchell, J. Vargas, and A. Hoffmann, “Signaling via the NF κ B system,” Wiley Per iodicals, vol. 8, no. June, pp. 227–241, 2016, doi: 10.1002/wsbm.1331.

Q. W. (2016). Su, P., Feng, S. S., & Li, “Research progress of the structure and function of NF-κB and IκB in different animal groups.,” Yi chuan = Hered., vol. 38, no. (6), pp. 523–531, 2016, doi: . https://doi.org/10.16288/j.yczz.15-509.

M. G. Dorrington and I. D. C. Fraser, “NF-κB signaling in macrophages: Dynamics, crosstalk, and signal integration,” Front. Immunol., vol. 10, no. APR, 2019, doi: 10.3389/fimmu.2019.00705.

H. Yu, L. Lin, and Z. Zhang, “Targeting NF- κ B pathway for the therapy of diseases : mechanism and clinical study,” Signal Transduct. Target. Ther., no. August, 2020, doi: 10.1038/s41392-020-00312-6.

H. C. Thoms and L. A. Stark, “The NF- κ B Nucleolar Stress Response Pathway,” biomedicines, vol. 50, pp. 1–16, 2021.

K. P. Singh, A. Dhasmana, and Q. Rahman, “Elucidation the toxicity mechanism of zinc oxide nanoparticle using molecular docking approach with proteins,” Asian J. Pharm. Clin. Res., vol. 11, no. 3, pp. 441–446, 2018, doi: 10.22159/ajpcr.2018.v11i3.23384.

J. N. and H. Wu1, “Molecular Basis of NF-κB Signaling,” Annu Rev Biophys, pp. 443–468, 2013, doi: 10.1146/annurev-biophys-083012-130338.Molecular.

D. Vu, D. Bin Huang, A. Vemu, and G. Ghosh, “A structural basis for selective dimerization by NF-κB RelB,” J. Mol. Biol., vol. 425, no. 11, pp. 1934–1945, 2013, doi: 10.1016/j.jmb.2013.02.020.

J. Napetschnig and H. Wu, “Molecular basis of NF-κB signaling,” Annu. Rev. Biophys., vol. 42, no. 1, pp. 443–468, 2013, doi: 10.1146/annurev-biophys-083012-130338.

G. TD., “Introduction to NF-κB: players, pathways, perspectives.,” Oncogene, vol. 25:, pp. 6680–6684., 2006, doi: doi: 10.1038/sj.onc.1209954.

G. G. Huang D-B, Vu D, “NF-κB RelB forms an intertwined homodimer.,” Structure, vol. 13:, pp. 1365–1373., 2005.

G.-P. R. Guo S, Liu M, “Role of Notch and its oncogenic signaling crosstalk in breast cancer.,” Biochim Biophys Acta, vol. 1815:, pp. 197–213., 2011.

Z. E. Shih VF, Davis-Turak J, Macal M, Huang JQ, Ponomarenko J, Kearns JD, Yu T, Fagerlund R, Asagiri M, “Control of RelB during dendritic cell activation integrates canonical and noncanonical NF-κB pathways.,” Nat Immunol, vol. 13:, pp. 1162–1170., 2012.

G. S. Hayden MS, “008. Shared principles in NF-κB signaling.,” Cell, vol. 132:, pp. 344–362., 2008, doi: doi: 10.1016/j.cell.2008.01.020.

N. Wang, S. Ahmed, and T. M. Haqqi, “Genomic structure and functional characterization of the promoter region of human IκB kinase-related kinase IKKi/IKKε gene,” Gene, vol. 353, no. 1, pp. 118–133, 2005, doi: 10.1016/j.gene.2005.04.013.

J. Jin et al., “Noncanonical NF-κB pathway controls the production of type I interferons in antiviral innate immunity,” Immunity, vol. 40, no. 3, pp. 342–354, 2014, doi: 10.1016/j.immuni.2014.02.006.

S. Mitchell, J. Vargas, and A. Hoffmann, “Signaling via the NFκB system Simon,” Wiley Interdiscip Rev Syst Biol Med, 2021, doi: 10.1002/wsbm.1331.Signaling.

J. Jaruszewicz-bło, I. Kosiuk, W. Prus, and T. L. Id, “A plausible identifiable model of the canonical NF- κ B signaling pathway,” PLoS One, pp. 1–26, 2023, doi: 10.1371/journal.pone.0286416.

S. Sun, “The noncanonical NF- j B pathway,” Immunol. Rev., no. 4, pp. 125–140, 2012.

K. Mcintosh et al., “IL-1 β stimulates a novel , IKK α -dependent , NIK -independent activation of non-canonical NF κ B signalling,” Cell. Signal., vol. 107, no. October 2022, 2023, doi: 10.1016/j.cellsig.2023.110684.

M. Jones, W. K., Brown, M., Ren, X., He, S., & McGuinness, “NF-kappaB as an integrator of diverse signaling pathways: the heart of myocardial signaling?.,” Cardiovasc. Toxicol., vol. 3, no. (3), pp. 229–254., 2003.

E. J. Lim et al., “Toll-like receptor 9 dependent activation of MAPK and NF-κB is required for the CpG ODN-induced matrix metalloproteinase-9 expression,” Exp. Mol. Med., vol. 39, no. 2, pp. 239–245, 2007, doi: 10.1038/emm.2007.27.

J. Chew et al., “WIP1 phosphatase is a negative regulator of NF-κB signalling,” Nat. Cell Biol., vol. 11, no. 5, pp. 659–666, 2009, doi: 10.1038/ncb1873.

S. G. Matthew S Hayden, “Regulation of NF-κB by TNF Family Cytokines,” Semin Immunol., vol. 26, no. 3, pp. 253–266, 2015, doi: 10.1016/j.smim.2014.05.004.Regulation.

F. Christian, E. L. Smith, and R. J. Carmody, “The regulation of NF-кB Subunits by Phosphorylation,” Cells, vol. 5, no. 1, 2016, doi: 10.3390/cells5010012.

A. et al. Malinin, N., Boldin, M., Kovalenko, “MAP3K-related kinase involved in NF-KB induction by TNF, CD95 and IL-1.,” Nature, vol. 385, pp. 540–544 ., 1997, doi: https://doi.org/10.1038/385540a0.

et al. Sarkar D, Park ES, Emdad L, “Molecular basis of nuclear factor-kappaB activation by astrocyte elevated gene-1. 2008;,” Cancer Res, vol. 68:, pp. 1478-1484., 2008.

et al. Nozell S, Laver T, Moseley D, “The ING4 tumor suppres_sor attenuates NF-kappaB activity at the promoters of target genes. 2008;,” Mol Cell Biol, vol. 28:, pp. 6632-6645., 2008.

B. D. Hoffmann A, Levchenko A, Scott ML, “The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. 2002;,” Science (80-. )., no. 298:, pp. 1241-1245., 2002.

C. S. Natoli G, “Nuclear ubiquitin ligases, NF-kappaB degradation, and the control of inflammation. 2008;,” Sci Signal, no. 1, p. :pe1., 2008.

et al. Chen Y, Li HH, Fu J, “Oncoprotein p28 GANK binds to RelA and retains NF-kappaB in the cytoplasm through nuclear export. ;,” Cell Res 2007, no. 17:, pp. 1020-1029..

et al. Ashall L, Horton CA, Nelson DE, “Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. 2009;,” Science (80-. )., no. 324:, pp. 242-246., 2009.

F. W. and M. J. Lenardo, “The Nuclear Signaling of NF-κB – Current Knowledge, New Insights, and Future Perspectives,” Gerontology, vol. 61, no. 6, pp. 515–525, 2015, doi: 10.1038/cr.2009.137.The.

C. Kizilirmak, M. E. Bianchi, and S. Zambrano, “Insights on the NF-κB System Using Live Cell Imaging: Recent Developments and Future Perspectives,” Front. Immunol., vol. 13, no. June, pp. 1–14, 2022, doi: 10.3389/fimmu.2022.886127.

Q. Li and I. M. Verma, “NF-κB regulation in the immune system,” Nat. Rev. Immunol., vol. 2, no. 10, pp. 725–734, 2002, doi: 10.1038/nri910.

T. Lawrence, “The nuclear factor NF-kappaB pathway in inflammation.,” Cold Spring Harb. Perspect. Biol., vol. 1, no. 6, pp. 1–10, 2009, doi: 10.1101/cshperspect.a001651.

G. He and M. Karin, “NF-κB and STAT3- key players in liver inflammation and cancer,” Cell Res., vol. 21, no. 1, pp. 159–168, 2011, doi: 10.1038/cr.2010.183.

K. M. Maeda S, Kamata H, Luo JL, Leffert H, “IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis.,” Cell, vol. 121:, pp. 977-990., 2005.

et al. Naugler WE, Sakurai T, Kim S, “Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. ;,” Science (80-. )., vol. 317:, pp. 121-124., 2007.

K. Nagalakshmi, S. Shila, L. Inbathamizh, A. Thenmozhi, P. Rasappan, and P. T. Srinivasan, “Targeting nuclear factor kappa b with chelated zinc compounds towards anticancer drug design,” Int. J. Appl. Pharm., vol. 13, no. 4, pp. 123–127, 2021, doi: 10.22159/ijap.2021v13i4.41650.

et al. Florentine Dylong , Jan Riedel , Gaurang M Amonkar , Nicole Peukert, “Overactivated Epithelial NF-κB Disrupts Lung Development in Congenital Diaphragmatic Hernia,” Am. J. Respir. Cell Mol. Biol., 2023, doi: doi: 10.1165/rcmb.2023-0138OC.

S. J. Nennig SE, “The role of NFkB in drug addiction: beyond inflammation. 2017 Jan 7;,” Alcohol Alcohol., vol. 52, no. (2):, pp. 172–9..

S. N. Rehni AK, Bhateja P, Singh TG, “Nuclear factor-κ-B inhibitor modulates the development of opioid dependence in a mouse model of naloxone-induced opioid withdrawal syndrome.2008 May 1;,” Behav. Pharmacol., vol. 19, no. (3), p. :265-9., 2008.

A. Capasso, “Involvement of nuclear factor-kB in the expression of opiate withdrawal.,” Prog. Neuropsychopharmacol. Biol. Psychiatry, vol. 25, pp. 1259-1268., 2001.

F. T. Edenberg HJ, Xuei X, Wetherill LF, Bierut L, Bucholz K, Dick DM, Hesselbrock V, Kuperman S, Porjesz B, Schuckit MA, Tischfield JA, Almasy LA, Nurnberger JI Jr, “Association of NFKB1, which encodes a subunit of the transcription factor NF-kappaB, with alcohol dependence. 2008;,” Hum Mol Genet., vol. 17, no. (7), p. :963-70., 2008.

Y. M. Cui R, Li R, Guo X, Jia X, “RNA interference against stromal interacting molecule-1 (STIM1) ameliorates ethanol-induced hepatotoxicity.2018;,” Chem Biol Interact., vol. 289:, pp. 47-56., 2018.

C. F. Zou J, “Induction of innate immune gene expression cascades in brain slice cultures by ethanol: key role of NF‐κB and proinflammatory cytokines. Alcoholism: 2010 May;,” Clin. Exp. Res., vol. 34, no. (5):, pp. 777–89..

C. F. Zou J, “CREB and NF-κB transcription factors regulate sensitivity to excitotoxic and oxidative stress induced neuronal cell death. 2006 Jul 1;,” Cell. Mol. Neurobiol., vol. 26, no. (4-6):, pp. 383-403., 2006.

C. F. Qin L, “Chronic ethanol increases systemic TLR3 agonist-induced neuroinflammation and neurodegeneration. 2012 Dec;,” J. neuroinflammation., vol. 9, no. (1):, p. 130..

H. R. Truitt JM, Blednov YA, Benavidez JM, Black M, Ponomareva O, Law J, Merriman M, Horani S, Jameson K, Lasek AW, “Inhibition of IKKβ reduces ethanol consumption in C57BL/6J mice.,” eneuro., vol. 3, no. (5).

S. S. Athari, “Targeting cell signaling in allergic asthma,” Signal Transduct. Target. Ther., vol. 4, no. 1, pp. 1–19, 2019, doi: 10.1038/s41392-019-0079-0.

E. R. Youness, H. F. Aly, and M. El Nemr, “Role of apelin/monocyte chemoattractant protein-1, inflammatory, apoptotic markers in the regulation of patients with non-alcoholic fatty liver disease,” Asian J. Pharm. Clin. Res., vol. 11, no. 8, pp. 138–142, 2018, doi: 10.22159/ajpcr.2018.v11i8.25281.

L. Deng et al., “Suppression of NF-κB activity: A viral immune evasion mechanism,” Viruses, vol. 10, no. 8, pp. 1–22, 2018, doi: 10.3390/v10080409.

V. Ramadass, T. Vaiyapuri, and V. Tergaonkar, “Small molecule nf-kb pathway inhibitors in clinic,” Int. J. Mol. Sci., vol. 21, no. 14, pp. 1–43, 2020, doi: 10.3390/ijms21145164.

P. P., “NF-κB and Disease.,” Int J Mol Sci., vol. 21, no. (23), p. ;:9181., 2020, doi: doi: 10.3390/ijms21239181.

F. Z. Yaoyao Yana, Qi Lva, “Compound 51Promising candidate for the development of anti-inflammatory drugs”.

M. E. Pierce, J.W., Schoenleber, R., Jesmok, G., Best, J., Moore, S.A., Collins, T., Gerritsen, “Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo.,” J. Biol. Chem., vol. 272, no. 21096–21103., 1997.

L. Li, Y.; Chen, M.; Zhou, Y.; Tang, C.; Zhang, W.; Zhong, Y.; Chen, Y.; Zhou, H.; Sheng, “NIK links inflammation to hepatic steatosis by suppressing PPAR-α in alcoholic liver disease.,” Theranostics, vol. 10, p. 3579–3593, 2020.

Z. Ren, X.; Li, X.; Jia, L.; Chen, D.; Hou, H.; Rui, L.; Zhao, Y.; Chen, “A small-molecule inhibitor of NF-_B-inducing kinase (NIK) protects liver from toxin-induced inflammation, oxidative stress, and injury.,” FASEB J., vol. 31, pp. 711–718., 2017.

C. . Blaquiere, N.; Castanedo, G.M.; Burch, J.D.; Berezhkovskiy, L.M.; Brightbill, H.; Brown, S.; Chan and T. . et al. Chiang, P.C.; Crawford, J.J.; Dong, “Sca old-Hopping Approach To Discover Potent, Selective, and E_cacious Inhibitors of NF-_B Inducing Kinase.,” J. Med. Chem., no. 61, pp. 6801–6813., 2018.

M. . Takakura, N.; Matsuda, M.; Khan, M.; Hiura, F.; Aoki, K.; Hirohashi, Y.; Mori, K.; Yasuda, H.; Hirata and C. . et al. Kitamura, “A novel inhibitor of NF-_B-inducing kinase prevents bone loss by inhibiting osteoclastic bone resorption in ovariectomized mice.,” Bone, vol. 135, no. 115316., 2020.

C. . Pippione, A.C.; Sainas, S.; Federico, A.; Lupino, E.; Piccinini, M.; Kubbutat, M.; Contreras, J.M.; Morice and A. . et al. Barge, A.; Ducime, “N-Acetyl-3-aminopyrazoles block the non-canonical NF-kB cascade by selectively inhibiting NIK yElectronic supplementary information (ESI) available: Additional biochemical data, chemistry, NMR characterization of final compounds, and biochemical protocols,” Medchemcomm, vol. 9, pp. 963–968., 2018.

C. Zhang, “Dioscin Ameliorates Experimental Autoimmune Thyroiditis via the mTOR and TLR4 / NF- κ B Signaling,” no. August, 2023.

E. Casper, “The crosstalk between Nrf2 and NF-κB pathways in coronary artery disease: Can it be regulated by SIRT6.,” Life Sci., vol. 330, 2023, doi: https://doi.org/10.1016/j.lfs.2023.122007.

Z. R. Xue R, Xie M, Wu Z, Wang S, Zhang Y, Han Z, Li C, Tang Q, Wang L, Li D, Wang S, Yang H, “Mesenchymal Stem Cell-Derived Exosomes Promote Recovery of The Facial Nerve Injury through Regulating Macrophage M1 and M2 Polarization by Targeting the P38 MAPK/NF-Kb Pathway.,” Aging Dis., 2023, doi: doi: 10.14336/AD.2023.0719-1.

T. M. Adepoju FO, Duru KC, Li E, Kovaleva EG, “Pharmacological Potential of Betulin as a Multitarget Biomolecules. 2023 Jul 12;,” Compound., vol. 13, no. (7):1105., 2023, doi: doi: 10.3390/biom13071105.

L. L. Junjuan Zhang, Weijian Han, Mingzhu Li, Ruoman Bai, Zhanyun Tian, Wanzhe Yuan, “Histone acetylation regulates BMMCs recognition of foot-and-mouth disease virus-like particles, Volume 121, 2023, 110428, ISSN 1567-,” Int. Immunopharmacol.

Published

01-05-2024

How to Cite

SINGH, A. P., A. K. SHARMA, and T. G. SINGH. “UNLOCKING THE THERAPEUTIC POTENTIAL: EXPLORING NF-κB AS A VIABLE TARGET FOR DIVERSE PHARMACOLOGICAL APPROACHES”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 16, no. 6, May 2024, doi:10.22159/ijpps.2024v16i6.49530.

Issue

Section

Review Article(s)