UNLOCKING THE THERAPEUTIC POTENTIAL: EXPLORING NF-κB AS A VIABLE TARGET FOR DIVERSE PHARMACOLOGICAL APPROACHES

Authors

  • AJEET PAL SINGH NIMS Institute of Pharmacy, NIMS University, Jaipur-303121, Rajasthan, India and St. Soldier Institute of Pharmacy, Jalandhar-144011, Punjab, India
  • ASHISH KUMAR SHARMA NIMS Institute of Pharmacy, NIMS University, Jaipur-303121, Rajasthan, India https://orcid.org/0000-0003-0742-8555
  • THAKUR GURJEET SINGH Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India https://orcid.org/0000-0003-2979-1590

DOI:

https://doi.org/10.22159/ijpps.2024v16i6.49530

Keywords:

NF-κB, Canonical pathway, Non-canonical pathway

Abstract

NF-κB is a vital transcription factor that responds to diverse stimuli like cytokines, infections, and stress. It forms different dimers, binds to specific DNA sequences, and regulates gene expression. It operates through two pathways: canonical (for inflammation and immunity) and non-canonical (for specific processes). These pathways tightly control activity of NF-κB and impacting gene expression. Aberrant NF-κB activation is linked to cancer and other diseases, making it a potential therapeutic target. This review explores the role of NF-κB in disease and its therapeutic potential in various conditions. Intricate signal transduction processes lead to NF-κB activation by phosphorylating IκB proteins, allowing NF-κB dimers to enter the nucleus and influence gene expression. This dynamic regulation involves co-activators and interactions with other transcription factors, shaping complex gene expression programs.

Understanding the multifaceted functions off NF-κB is crucial as its deregulation is associated with a range of diseases, including cancer, autoimmune disorders, and inflammatory conditions. Exploring recent studies offers insights into potential therapeutic strategies aimed at modulating NF-κB activity to restore health and combat various pathological conditions. This Comprehensive review is based on the role of NF-κB in disease pathogenesis and therapeutic implications.

Downloads

Download data is not yet available.

References

Ichikawa K, Ohshima D, Sagara H. Regulation of signal transduction by spatial parameters: a case in NF-κB oscillation. IET Syst Biol. 2015;9(2):41-51. doi: 10.1049/iet-syb.2013.0020, PMID 26672147.

Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med. 2016;8(3):227-41. doi: 10.1002/wsbm.1331, PMID 26990581.

Su P, Feng SS, Li QW. Research progress of the structure and function of NF-κB and IκB in different animal groups. Yi Chuan. 2016;38(6):523-31. doi: 10.16288/j.yczz.15-509, PMID 27655314.

Dorrington MG, Fraser ID. NF-κB signaling in macrophages: dynamics, crosstalk, and signal integration. Front Immunol. 2019;10:705. doi: 10.3389/fimmu.2019.00705, PMID 31024544.

Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020;5(1):209. doi: 10.1038/s41392-020-00312-6, PMID 32958760.

Thoms HC, Stark LA. The NF-κB nucleolar stress response pathway. Biomedicines. 2021;9(9):1-16. doi: 10.3390/biomedicines9091082.

Singh KP, Dhasmana A, Rahman Q. Elucidation the toxicity mechanism of zinc oxide nanoparticle using molecular docking approach with proteins. Asian J Pharm Clin Res. 2018;11(3):441-6. doi: 10.22159/ajpcr.2018.v11i3.23384.

Napetschnig J, Wu H. Molecular basis of NF-κB signaling. Annu Rev Biophys. 2013;42:443-68. doi: 10.1146/annurev-biophys-083012-130338, PMID 23495970.

Vu D, Huang DB, Vemu A, Ghosh G. A structural basis for selective dimerization by NF-κB RelB. J Mol Biol. 2013;425(11):1934-45. doi: 10.1016/j.jmb.2013.02.020, PMID 23485337.

Napetschnig J, Wu H. Molecular basis of NF-κB signaling. Annu Rev Biophys. 2013;42(1):443-68. doi: 10.1146/annurev-biophys-083012-130338, PMID 23495970.

G TD. Introduction to NF-κB: players, pathways, perspectives. Oncogene. 2006;25:6680-4. doi: 10.1038/sj.onc.1209954.

Huang DB, Vu D, Ghosh G. NF-kappaB RelB forms an intertwined homodimer. Structure. 2005;13(9):1365-73. doi: 10.1016/j.str.2005.06.018, PMID 16154093.

Guo S, Liu M, Gonzalez Perez RR. Role of notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta. 2011;1815(2):197-213. doi: 10.1016/j.bbcan.2010.12.002, PMID 21193018.

Shih VF, Davis Turak J, Macal M, Huang JQ, Ponomarenko J, Kearns JD. Control of RelB during dendritic cell activation integrates canonical and noncanonical NF-κB pathways. Nat Immunol. 2012;13(12):1162-70. doi: 10.1038/ni.2446, PMID 23086447.

Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell. 2008;132(3):344-62. doi: 10.1016/j.cell.2008.01.020, PMID 18267068.

Wang N, Ahmed S, Haqqi TM. Genomic structure and functional characterization of the promoter region of human IκB kinase-related kinase IKKi/IKKε gene. Gene. 2005;353(1):118-33. doi: 10.1016/j.gene.2005.04.013, PMID 15939554.

Jin J, Hu H, Li HS, Yu J, Xiao Y, Brittain GC. Noncanonical NF-κB pathway controls the production of type I interferons in antiviral innate immunity. Immunity. 2014;40(3):342-54. doi: 10.1016/j.immuni.2014.02.006, PMID 24656046.

Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med. 2016;8(3):227-41. doi: 10.1002/wsbm.1331, PMID 26990581.

Jaruszewicz Błonska J, Kosiuk I, Prus W, Lipniacki T. A plausible identifiable model of the canonical NF-κB signaling pathway. PLOS ONE. 2023;18(6):e0286416. doi: 10.1371/journal.pone.0286416, PMID 37267242.

Sun S. The noncanonical NF-j B pathway. Immunol Res. 2012;4:125-40.

Mcintosh K. IL-1β stimulates a novel, IKK α-dependent, NIK-independent activation of noncanonical NF-κB signalling. Cell Signal. 2022;107:2023. doi: 10.1016/j.cellsig.2023.110684.

Jones WK, Brown M, Ren X, He S, McGuinness M. NF-kappaB as an integrator of diverse signaling pathways: the heart of myocardial signaling? Cardiovasc Toxicol. 2003;3(3):229-54. doi: 10.1385/ct:3:3:229, PMID 14555789.

Lim EJ, Lee SH, Lee JG, Kim JR, Yun SS, Baek SH. Toll-like receptor 9 dependent activation of MAPK and NF-kB is required for the CpG ODN-induced matrix metalloproteinase-9 expression. Exp Mol Med. 2007;39(2):239-45. doi: 10.1038/emm.2007.27, PMID 17464186.

Chew J, Biswas S, Shreeram S, Humaidi M, Wong ET, Dhillion MK. WIP1 phosphatase is a negative regulator of NF-κB signalling. Nat Cell Biol. 2009;11(5):659-66. doi: 10.1038/ncb1873, PMID 19377466.

Matthew SG, Hayden S. Regulation of NF-κB by TNF family cytokines. Semin Immunol. 2015;26(3):253-66. doi: 10.1016/j.smim.2014.05.004.

Christian F, Smith EL, Carmody RJ. The regulation of NF-κB subunits by phosphorylation. Cells. 2016;5(1). doi: 10.3390/cells5010012, PMID 26999213.

Malinin NL, Boldin MP, Kovalenko AV, Wallach D. MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature. 1997;385(6616):540-4. doi: 10.1038/385540a0, PMID 9020361.

Sarkar D, Park ES, Emdad L, Lee SG, Su ZZ, Fisher PB. Molecular basis of nuclear factor-kappaB activation by astrocyte elevated gene-1. Cancer Res. 2008;68(5):1478-84. doi: 10.1158/0008-5472.CAN-07-6164, PMID 18316612.

Nozell S, Laver T, Moseley D. The ING4 tumor suppres_sor attenuates NF-kappaB activity at the promoters of target genes. Mol Cell Biol. 2008;28:6632-45.

Hoffmann A, Levchenko A, Scott ML, Baltimore D. The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science. 2002;298(5596):1241-5. doi: 10.1126/science.1071914, PMID 12424381.

Natoli G, Chiocca S. Nuclear ubiquitin ligases, NF-kappaB degradation, and the control of inflammation. Sci Signal. 2008;1(1):pe1. doi: 10.1126/stke.11pe1, PMID 18270169.

Chen Y, Li HH, Fu J, Wang XF, Ren YB, Dong LW. Oncoprotein p28 GANK binds to RelA and retains NF-kappaB in the cytoplasm through nuclear export. Cell Res. 2007;17(12):1020-9. doi: 10.1038/cr.2007.99, PMID 18040287.

Ashall L, Horton CA, Nelson DE, Paszek P, Harper CV, Sillitoe K. Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science. 2009;324(5924):242-6. doi: 10.1126/science.1164860, PMID 19359585.

Wan F, Lenardo MJ. The nuclear signaling of NF-κB: current knowledge, new insights, and future perspectives. Cell Res. 2010;20(1):24-33. doi: 10.1038/cr.2009.137.

Kizilirmak C, Bianchi ME, Zambrano S. Insights on the NF-κB system using live cell imaging: recent developments and future perspectives. Front Immunol. 2022;13:886127. doi: 10.3389/fimmu.2022.886127, PMID 35844496.

Li Q, Verma IM. NF-κB regulation in the immune system. Nat Rev Immunol. 2002;2(10):725-34. doi: 10.1038/nri910, PMID 12360211.

Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651. doi: 10.1101/cshperspect.a001651, PMID 20457564.

He G, Karin M. NF-κB and STAT3-key players in liver inflammation and cancer. Cell Res. 2011;21(1):159-68. doi: 10.1038/cr.2010.183, PMID 21187858.

Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell. 2005;121(7):977-90. doi: 10.1016/j.cell.2005.04.014, PMID 15989949.

Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317(5834):121-4. doi: 10.1126/science.1140485, PMID 17615358.

Nagalakshmi K, Shila S, Inbathamizh L, Thenmozhi A, Rasappan P, Srinivasan PT. Targeting nuclear factor kappa B with chelated zinc compounds towards anticancer drug design. Int J App Pharm. 2021;13(4):123-7. doi: 10.22159/ijap.2021v13i4.41650.

Dylong F, Riedel J, Amonkar GM, Peukert N, Lieckfeldt P, Sturm K. Overactivated epithelial NF-κB disrupts lung development in congenital diaphragmatic hernia. Am J Respir Cell Mol Biol. 2023;69(5):545-55. doi: 10.1165/rcmb.2023-0138OC, PMID 37552822.

Nennig SE, Schank JR. The role of NFkB in drug addiction: beyond inflammation. Alcohol Alcohol. 2017 Jan 7;52(2):172-9. doi: 10.1093/alcalc/agw098, PMID 28043969.

Rehni AK, Bhateja P, Singh TG, Singh N. Nuclear factor-kappa-B inhibitor modulates the development of opioid dependence in a mouse model of naloxone-induced opioid withdrawal syndrome. Behav Pharmacol. 2008 May 1;19(3):265-9. doi: 10.1097/FBP.0b013e3282febcd9, PMID 18469544.

Capasso A. Involvement of nuclear factor-kB in the expression of opiate withdrawal. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25(6):1259-68. doi: 10.1016/s0278-5846(01)00178-6, PMID 11474844.

Edenberg HJ, Xuei X, Wetherill LF, Bierut L, Bucholz K, Dick DM. Association of NFKB1, which encodes a subunit of the transcription factor NF-kappaB, with alcohol dependence. Hum Mol Genet. 2008;17(7):963-70. doi: 10.1093/hmg/ddm368, PMID 18079108.

Cui R, Li R, Guo X, Jia X, Yan M. RNA interference against stromal interacting molecule-1 (STIM1) ameliorates ethanol-induced hepatotoxicity. Chem Biol Interact. 2018;289:47-56. doi: 10.1016/j.cbi.2018.04.025, PMID 29704510.

Zou J, Crews F. Induction of innate immune gene expression cascades in brain slice cultures by ethanol: key role of NF-κB and proinflammatory cytokines. Alcohol Clin Exp Res. 2010;34(5):777-89. doi: 10.1111/j.1530-0277.2010.01150.x, PMID 20201932.

Zou J, Crews F. CREB and NF-κB transcription factors regulate sensitivity to excitotoxic and oxidative stress-induced neuronal cell death. Cell Mol Neurobiol. 2006 Jul 1;26(4-6):383-403. doi: 10.1007/s10571-006-9045-9.

Qin L, Crews FT. Chronic ethanol increases systemic TLR3 agonist-induced neuroinflammation and neurodegeneration. J Neuroinflammation. 2012 Dec;9:130. doi: 10.1186/1742-2094-9-130, PMID 22709825.

Truitt JM, Blednov YA, Benavidez JM, Black M, Ponomareva O, Law J. Inhibition of IKKβ reduces ethanol consumption in C57BL/6J mice. eNeuro. 2016;3(5). doi: 10.1523/ENEURO.0256-16.2016, PMID 27822501.

Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther. 2019;4(1):45. doi: 10.1038/s41392-019-0079-0, PMID 31637021.

Youness ER, Aly HF, Nemr ME. Role of apelin/monocyte chemoattractant protein-1, inflammatory, apoptotic markers in the regulation of patients with non-alcoholic fatty liver disease. Asian J Pharm Clin Res 2018;11(8):25281. doi: 10.22159/ajpcr.2018.v11i8.25281.

Deng L, Zeng Q, Wang M, Cheng A, Jia R, Chen S. Suppression of NF-κB activity: a viral immune evasion mechanism. Viruses. 2018;10(8):1-22. doi: 10.3390/v10080409, PMID 30081579.

Ramadass V, Vaiyapuri T, Tergaonkar V. Small molecule NF-κB pathway inhibitors in clinic. Int J Mol Sci. 2020;21(14):1-43. doi: 10.3390/ijms21145164, PMID 32708302.

Poma P. NF-κB and disease. Int J Mol Sci. 2020;21(23):9181. doi: 10.3390/ijms21239181, PMID 33276434.

Yaoyao Yana FZ, Lva Q. Compound 51 promising candidate for the development of anti-inflammatory drugs; 2020.

Pierce JW, Schoenleber R, Jesmok G, Best J, Moore SA, Collins T. Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem. 1997;272(34):21096-103. doi: 10.1074/jbc.272.34.21096, PMID 9261113.

Li Y, Chen M, Zhou Y, Tang C, Zhang W, Zhong Y. NIK links inflammation to hepatic steatosis by suppressing PPARα in alcoholic liver disease. Theranostics. 2020;10(8):3579-93. doi: 10.7150/thno.40149, PMID 32206109.

Ren X, Li X, Jia L, Chen D, Hou H, Rui L. A small-molecule inhibitor of NF-κB-inducing kinase (NIK) protects liver from toxin-induced inflammation, oxidative stress, and injury. FASEB J. 2017;31(2):711-8. doi: 10.1096/fj.201600840R, PMID 27871061.

Blaquiere N, Castanedo GM, Burch JD, Berezhkovskiy LM, Brightbill H, Brown S. Scaffold-hopping approach to discover potent, selective, and efficacious inhibitors of NF-κB inducing kinase. J Med Chem. 2018;61(15):6801-13. doi: 10.1021/acs.jmedchem.8b00678, PMID 29940120.

Takakura N, Matsuda M, Khan M, Hiura F, Aoki K, Hirohashi Y. A novel inhibitor of NF-κB-inducing kinase prevents bone loss by inhibiting osteoclastic bone resorption in ovariectomized mice. Bone. 2020;135:115316. doi: 10.1016/j.bone.2020.115316, PMID 32169603.

Pippione AC, Sainas S, Federico A, Lupino E, Piccinini M, Kubbutat M. N-Acetyl-3-aminopyrazoles block the non-canonical NF-kB cascade by selectively inhibiting NIK. Med Chem Comm. 2018;9(6):963-8. doi: 10.1039/c8md00068a, PMID 30108985.

Zhang C. ’Dioscin ameliorates experimental autoimmune thyroiditis via the mTOR and TLR4/NF-κB Signaling; 2023 Aug.

Casper E. The crosstalk between Nrf2 and NF-κB pathways in coronary artery disease: can it be regulated by SIRT6? Life Sci. 2023;330:122007. doi: 10.1016/j.lfs.2023.122007, PMID 37544377.

Xue R, Xie M, Wu Z, Wang S, Zhang Y, Han Z. Mesenchymal stem cell-derived exosomes promote recovery of the facial nerve injury through regulating macrophage M1 and M2 polarization by targeting the P38 MAPK/NF-Κb pathway. Aging Dis. 2024;15(2):851-68. doi: 10.14336/AD.2023.0719-1, PMID 37548941.

Adepoju FO, Duru KC, Li E, Kovaleva EG, Tsurkan MV. Pharmacological potential of betulin as a multitarget compound. Biomolecules. 2023;13(7). doi: 10.3390/biom13071105, PMID 37509141.

Junjuan Zhang LL, Han W, Li M, Bai R, Tian Z, Yuan W. Histone acetylation regulates BMMCs recognition of foot-and-mouth disease virus-like particles. Int Immunopharmacol. 2023;121:110428.

Published

01-06-2024

How to Cite

SINGH, A. P., A. K. SHARMA, and T. G. SINGH. “UNLOCKING THE THERAPEUTIC POTENTIAL: EXPLORING NF-κB AS A VIABLE TARGET FOR DIVERSE PHARMACOLOGICAL APPROACHES”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 16, no. 6, June 2024, pp. 1-9, doi:10.22159/ijpps.2024v16i6.49530.

Issue

Section

Review Article(s)