CRISPR-CAS9-MEDIATED EX VIVO GENE EDITING FOR INHERITED HEMATOLOGICAL DISORDERS: ADVANCEMENTS, CHALLENGES, AND CLINICAL POTENTIAL

Authors

  • ATASI RANJAN PANDA JSS College of Pharmacy, M. Pharm Department of Pharmaceutics, JSS Academy of Higher Education and Research, Mysuru-570015, Karnataka, India https://orcid.org/0009-0008-2369-5673
  • SHREEYA DAS Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India https://orcid.org/0009-0005-5951-6487

DOI:

https://doi.org/10.22159/ijpps.2024v16i9.51048

Keywords:

CRISPR-Cas9, Gene editing, Inherited hematological disorders, Precision medicine, Ex vivo interventions, Genetic mutations, Clinical trials, Off-target effects, Immune responses, Therapeutic advancements

Abstract

Global healthcare systems have a great challenge in the form of inherited hematological diseases, which necessitates the development of new remedial strategies. By precisely targeting inherited abnormalities, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated ex vivo gene editing has surfaced as a promising approach to treat these diseases. This review offers a comprehensive examination of the advancements, challenges, and clinical eventuality of CRISPR-Cas9-intermediated ex vivo gene editing for inherited hematological diseases. With advancements in CRISPR-Cas9 technology, the eventuality to correct inheritable mutations responsible for inherited hematological diseases is within reach. However, challenges such as off-target effects, immune responses, and ethical considerations need to be addressed for the safe and effective perpetration of this technology. A promising understanding of how CRISPR-Cas9-intermediated gene editing functions in practice is handed by ongoing clinical studies, giving rise to the possibility of advanced remedial approaches and bettered patient issues. By addressing these complications in a human-readable format, this review attempts to provide greater understanding and appreciation for the eventuality of CRISPR-Cas9 technology in revolutionizing the treatment landscape for these challenging disorders and contribute to the ongoing discussion in the field and facilitate further exploration towards effective treatments for these challenging disorders.

Downloads

Download data is not yet available.

References

Lillicrap D. Introduction to a series of reviews on inherited bleeding disorders. Blood. 2015;125(13):2011. doi: 10.1182/blood-2015-01-613588, PMID 25712995.

Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115(22):4331-6. doi: 10.1182/blood-2010-01-251348, PMID 20233970.

Ifeanyi E, Ogechi B, Emmanuel Ifeanyi O, ISSN. Sickle cell anaemia: a review. Scholars Journal of Applied Medical Sciences. 2015;3(6B):2244-52.

Soni S. Gene therapies for transfusion-dependent β-thalassemia: current status and critical criteria for success. Am J Hematol. 2020;95(9):1099-112. doi: 10.1002/ajh.25909, PMID 32562290.

Cao A, Moi P, Galanello R. Recent advances in β-thalassemias. Pediatr Rep. 2011;3(2):e17. doi: 10.4081/pr.2011.e17, PMID 21772954.

Galanello R, Origa R. Open access review biomed central beta-thalassemia. Vol. 5. Orphanet Journal of Rare Diseases; 2010. Available from: http://www.ojrd.com/content/5/1/11 [Last accessed on 16 Aug 2024]

Romito M, Rai R, Thrasher AJ, Cavazza A. Genome editing for blood disorders: state of the art and recent advances. Emerg Top Life Sci. 2019;3(3):289-99. doi: 10.1042/ETLS20180147, PMID 33523137.

Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021 Jan 21;384(3):252-60. doi: 10.1056/NEJMoa2031054, PMID 33283989.

Pandey VK, Tripathi A, Bhushan R, Ali A, Dubey PK. Application of CRISPR/Cas9 genome editing in genetic disorders: a systematic review up to date. J Genet Syndr Gene Ther. 2017;08(2). doi: 10.4172/2157-7412.1000321.

Demirci S, Uchida N, Tisdale JF. Gene therapy for sickle cell disease: an update. Cytotherapy. 2018;20(7):899-910. doi: 10.1016/j.jcyt.2018.04.003, PMID 29859773.

Daniel Moreno A, Lamsfus Calle A, Raju J, Antony JS, Handgretinger R, Mezger M. CRISPR/Cas9-modified hematopoietic stem cells present and future perspectives for stem cell transplantation. Bone Marrow Transplant. 2019;54(12):1940-50. doi: 10.1038/s41409-019-0510-8, PMID 30903024.

Cavazzana M, Bushman FD, Miccio A, Andre Schmutz I, Six E. Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat Rev Drug Discov. 2019;18(6):447-62. doi: 10.1038/s41573-019-0020-9, PMID 30858502.

Walsh RM, Hochedlinger K. A variant CRISPR-Cas9 system adds versatility to genome engineering. Proc Natl Acad Sci USA. 2013;110(39):15514-5. doi: 10.1073/pnas.1314697110, PMID 24014593.

Hille F, Charpentier E. CRISPR-cas: biology mechanisms and relevance. Philos Trans R Soc Lond B Biol Sci. 2016;371(1707). doi: 10.1098/rstb.2015.0496, PMID 27672148.

Chira S, Gulei D, Hajitou A, Zimta AA, Cordelier P, Berindan Neagoe I. CRISPR/Cas9: transcending the reality of genome editing. Mol Ther Nucleic Acids. 2017;7:211-22. doi: 10.1016/j.omtn.2017.04.001, PMID 28624197.

Yamamoto M, Tani K. Current status and recent advances of gene therapy in hematological diseases. Int J Hematol. 2016;104(1):4-5. doi: 10.1007/s12185-016-2036-9, PMID 27250344.

Humbert O, Samuelson C, Kiem HP. CRISPR/Cas9 for the treatment of haematological diseases: a journey from bacteria to the bedside. Br J Haematol. 2021;192(1):33-49. doi: 10.1111/bjh.16807, PMID 32506752.

Ma Y, Zhang L, Huang X. Genome modification by CRISPR/Cas9. FEBS Journal. 2014;281(23):5186-93. doi: 10.1111/febs.13110, PMID 25315507.

Gulei D, Berindan Neagoe I. CRISPR/Cas9: a potential lifesaving tool. What’s next? Mol Ther Nucleic Acids. 2017;9:333-6. doi: 10.1016/j.omtn.2017.10.013, PMID 29246311.

Iyer DN, Schimmer AD, Chang H. Applying CRISPR-Cas9 screens to dissect hematological malignancies. Blood Adv. 2023;7(10):2252-70. doi: 10.1182/bloodadvances.2022008966, PMID 36355853.

Shi H, Jiang M, Wang Z. Comprehensive update on applications of CRISPR/Cas9 for hematological diseases. Int J Clin Exp Med. Vol. 10; 2017. Available from: www.ijcem.com. [Last accessed on 16 Aug 2024]

Singh V, Braddick D, Dhar PK. Exploring the potential of genome editing CRISPR-Cas9 technology. Gene. 2017;599:1-18. doi: 10.1016/j.gene.2016.11.008, PMID 27836667.

Li B, Niu Y, Ji W, Dong Y. Strategies for the CRISPR-based therapeutics. Trends Pharmacol Sci. 2020;41(1):55-65. doi: 10.1016/j.tips.2019.11.006, PMID 31862124.

Gupta D, Bhattacharjee O, Mandal D, Sen MK, Dey D, Dasgupta A. CRISPR-Cas9 system: A new fangled dawn in gene editing. Life Sci. 2019;232:116636. doi: 10.1016/j.lfs.2019.116636, PMID 31295471.

Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms; 2017. doi: 10.1146/annurev-biophys.

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281-308. doi: 10.1038/nprot.2013.143, PMID 24157548.

Abdelnour SA, Xie L, Hassanin AA, Zuo E, Lu Y. The potential of CRISPR/Cas9 gene editing as a treatment strategy for inherited diseases. Front Cell Dev Biol. 2021;9:699597. doi: 10.3389/fcell.2021.699597, PMID 34977000.

Konishi CT, Long C. Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases. J Biomed Res. 2020;35(2):148-62. doi: 10.7555/JBR.34.20200105, PMID 33402545.

Bloomer H, Khirallah J, Li Y, Xu Q. CRISPR/Cas9 ribonucleoprotein mediated genome and epigenome editing in mammalian cells. Adv Drug Deliv Rev. 2022 Feb 1;181:114087. doi: 10.1016/j.addr.2021.114087, PMID 34942274.

Nidhi S, Anand U, Oleksak P, Tripathi P, Lal JA, Thomas G. Novel crispr cas systems: an updated review of the current achievements applications and future research perspectives. Int J Mol Sci. 2021;22(7). doi: 10.3390/ijms22073327, PMID 33805113.

Buffa V, Alvarez Vargas JR, Galy A, Spinozzi S, Rocca CJ. Hematopoietic stem and progenitors cells gene editing: beyond blood disorders. Front Genome Ed. 2022;4:997142. doi: 10.3389/fgeed.2022.997142, PMID 36698790.

Rautela I, Uniyal P, Thapliyal P, Chauhan N, Bhushan Sinha V, Dev Sharma M. An extensive review to facilitate understanding of CRISPR technology as a gene editing possibility for enhanced therapeutic applications. Gene. 2021;785:145615. doi: 10.1016/j.gene.2021.145615, PMID 33775851.

Antony JS, Haque AK, Lamsfus Calle A, Daniel Moreno A, Mezger M, Kormann MS. CRISPR/Cas9 system: a promising technology for the treatment of inherited and neoplastic hematological diseases. Adv Cell Gene Ther. 2018 May;1(1):e10. doi: 10.1002/acg2.10.

LaFountaine JS, Fathe K, Smyth HD. Delivery and therapeutic applications of gene editing technologies ZFNs TALENs and CRISPR/Cas9. Int J Pharm. 2015;494(1):180-94. doi: 10.1016/j.ijpharm.2015.08.029, PMID 26278489.

Xu X, Wan T, Xin H, Li D, Pan H, Wu J. Delivery of CRISPR/Cas9 for therapeutic genome editing. J Gene Med. 2019;21(7):e3107. doi: 10.1002/jgm.3107, PMID 31237055.

Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chem Rev. 2017;117(15):9874-906. doi: 10.1021/acs.chemrev.6b00799, PMID 28640612.

Luther DC, Lee YW, Nagaraj H, Scaletti F, Rotello VM. Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges. Expert Opin Drug Deliv. 2018;15(9):905-13. doi: 10.1080/17425247.2018.1517746, PMID 30169977.

Qushawy M, Nasr A. Solid lipid nanoparticles (SLNs) as nano drug delivery carriers: preparation characterization and application. Int J App Pharm. 2020;12(1-2):1-9. doi: 10.22159/ijap.2020v12i1.35312.

Nayek S, Venkatachalam A, Choudhury S. Recent nanocochleate drug delivery system for cancer treatment: a review. Int J Curr Pharm Sci. 2019 Nov 15:28-32. doi: 10.22159/ijcpr.2019v11i6.36359.

Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017;266:17-26. doi: 10.1016/j.jconrel.2017.09.012, PMID 28911805.

Karimian A, Azizian K, Parsian H, Rafieian S, Shafiei Irannejad V, Kheyrollah M. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J Cell Physiol. 2019;234(8):12267-77. doi: 10.1002/jcp.27972, PMID 30697727.

Sankaran VG, Ghazvinian R, Do R, Thiru P, Vergilio JA, Beggs AH. Exome sequencing identifies GATA1 mutations resulting in diamond blackfan anemia. J Clin Invest. 2012 Jul 2;122(7):2439-43. doi: 10.1172/JCI63597, PMID 22706301.

Steinberg MH, Sebastiani P. Genetic modifiers of sickle cell disease. Am J Hematol. 2012;87(8):795-803. doi: 10.1002/ajh.23232, PMID 22641398.

Ben Jehuda R, Shemer Y, Binah O. Genome editing in induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rev Rep. 2018;14(3):323-36. doi: 10.1007/s12015-018-9811-3, PMID 29623532.

Mohammadian Gol T, Urena Bailen G, Hou Y, Sinn R, Antony JS, Handgretinger R. CRISPR medicine for blood disorders: progress and challenges in delivery. Front Genome Ed. 2022;4:1037290. doi: 10.3389/fgeed.2022.1037290, PMID 36687779.

Huang C, Li Q, Li J. Site specific genome editing in treatment of inherited diseases: possibility progress and perspectives. Med Rev. 2022;2(5):471-500. doi: 10.1515/mr-2022-0029, PMID 37724161.

Mani I. CRISPR-Cas9 for treating hereditary diseases. Prog Mol Biol Transl Sci. 2021;181:165-83. doi: 10.1016/bs.pmbts.2021.01.017, PMID 34127193.

Pellagatti A, Dolatshad H, Yip BH, Valletta S, Boultwood J. Application of genome editing technologies to the study and treatment of hematological disease. Adv Biol Regul. 2016;60:122-34. doi: 10.1016/j.jbior.2015.09.005, PMID 26433620.

Zhang H, McCarty N. CRISPR-Cas9 technology and its application in haematological disorders. Br J Haematol. 2016;175(2):208-25. doi: 10.1111/bjh.14297, PMID 27619566.

Bhattacharjee G, Gohil N, Siruka D, Khambhati K, Maurya R, Ramakrishna S. CRISPR-dCas9 system for epigenetic editing towards therapeutic applications. Prog Mol Biol Transl Sci. 2023 Jan 1;198:15-24. doi: 10.1016/bs.pmbts.2023.02.005, PMID 37225318.

Kim EJ, Kang KH, Ju JH. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med. 2017 Jan 1;32(1):42-61. doi: 10.3904/kjim.2016.198, PMID 28049282.

Ho BX, Loh SJ, Chan WK, Soh BS. In vivo genome editing as a therapeutic approach. Int J Mol Sci. 2018;19(9). doi: 10.3390/ijms19092721, PMID 30213032.

Huang K, Zapata D, Tang Y, Teng Y, Li Y. In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications. Biomaterials. 2022 Dec 1;291:121876. doi: 10.1016/j.biomaterials.2022.121876, PMID 36334354.

Li R, Wang Q, She K, Lu F, Yang Y. CRISPR/Cas systems usher in a new era of disease treatment and diagnosis. Mol Biomed. 2022;3(1):31. doi: 10.1186/s43556-022-00095-y, PMID 36239875.

Fan Y, Chan JK. Editing the genome ex vivo stem cell therapy. Curr Stem Cell Rep. 2018;4(4):338-45. doi: 10.1007/s40778-018-0148-2.

Al-Saif AM. Gene therapy of hematological disorders: current challenges. Gene Ther. 2019;26(7-8):296-307. doi: 10.1038/s41434-019-0093-4, PMID 31300728.

Koniali L, Lederer CW, Kleanthous M. Therapy development by genome editing of hematopoietic stem cells. Cells. 2021;10(6):1492. doi: 10.3390/cells10061492, PMID 34198536.

Quintana Bustamante O, Fananas Baquero S, Dessy Rodriguez M, Ojeda Perez I, Segovia JC. Gene editing for inherited red blood cell diseases. Front Physiol. 2022;28(13):848261. doi: 10.3389/fphys.2022.848261, PMID 35418876.

Li Y, Glass Z, Huang M, Chen ZY, Xu Q. Ex vivo cell based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials. 2020;234:119711. doi: 10.1016/j.biomaterials.2019.119711, PMID 31945616.

Bhattacharjee G, Mani I, Gohil N, Khambhati K, Braddick D, Panchasara H. CRISPR technology for genome editing. In: Precision medicine for investigators, practitioners and providers. Elsevier; 2019. p. 59-69.

Gonzalez Romero E, Martinez Valiente C, Garcia Ruiz C, Vazquez Manrique RP, Cervera J, Sanjuan-Pla A. CRISPR to fix bad blood: a new tool in basic and clinical hematology. Haematologica. 2019;104(5):881-93. doi: 10.3324/haematol.2018.211359, PMID 30923099.

Germino Watnick P, Hinds M, Le A, Chu R, Liu X, Uchida N. Hematopoietic stem cell gene addition/editing therapy in sickle cell disease. Cells. 2022;11(11). doi: 10.3390/cells11111843, PMID 35681538.

Xu Y, Li Z. CRISPR cas systems: overview innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J. 2020;18:2401-15. doi: 10.1016/j.csbj.2020.08.031, PMID 33005303.

CRISPR HX/Cas9 system and its applications in human hematopoietic cells. Blood Cells Mol Dis. 2016;62:6-12. doi: 10.1016/j.bcmd.2016.09.003.

Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases. Mol Ther. 2021;29(2):571-86. doi: 10.1016/j.ymthe.2020.09.028, PMID 33238136.

Foley RA, Sims RA, Duggan EC, Olmedo JK, Ma R, Jonas SJ. Delivering the CRISPR/Cas9 system for engineering gene therapies: recent cargo and delivery approaches for clinical translation. Front Bioeng Biotechnol. 2022;26(10):973326. doi: 10.3389/fbioe.2022.973326, PMID 36225598.

Lino CA, Harper JC, Carney JP, Timlin JA. Delivering crispr: a review of the challenges and approaches. Drug Deliv. 2018;25(1):1234-57. doi: 10.1080/10717544.2018.1474964, PMID 29801422.

Rodriguez Rodriguez DR, Ramirez-Solis R, Garza Elizondo MA, Garza Rodriguez ML, Barrera Saldana HA. Genome editing: a perspective on the application of CRISPR/Cas9 to study human diseases a review. Int J Mol Med. 2019;43(4):1559-74. doi: 10.3892/ijmm.2019.4112, PMID 30816503.

Luthra R, Kaur S, Bhandari K. Applications of CRISPR as a potential therapeutic. Life Sci. 2021;284:119908. doi: 10.1016/j.lfs.2021.119908, PMID 34453943.

Zhang S, Wang Y, Mao D, Wang Y, Zhang H, Pan Y. Current trends of clinical trials involving CRISPR/Cas systems. Front Med (Lausanne). 2023;10(10):1292452. doi: 10.3389/fmed.2023.1292452, PMID 38020120.

Jensen TI, Axelgaard E, Bak RO. Therapeutic gene editing in haematological disorders with CRISPR/Cas9. Br J Haematol. 2019;185(5):821-35. doi: 10.1111/bjh.15851, PMID 30864164.

Rao I, Crisafulli L, Paulis M, Ficara F. Hematopoietic cells from pluripotent stem cells: hope and promise for the treatment of inherited blood disorders. Cells. 2022;11(3)557. doi: 10.3390/cells11030557, PMID 35159366.

Zhou L, Yao S. Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications. Mol Biomed. 2023;4(1):10. doi: 10.1186/s43556-023-00115-5, PMID 37027099.

Khoshandam M, Soltaninejad H, Mousazadeh M, Hamidieh AA, Hosseinkhani S. Clinical applications of the CRISPR/Cas9 genome editing system: delivery options and challenges in precision medicine. Genes Dis. 2024;11(1):268-82. doi: 10.1016/j.gendis.2023.02.027, PMID 37588217.

Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms advances and prospects. Signal Transduct Target Ther. 2020;5(1):1. doi: 10.1038/s41392-019-0089-y, PMID 32296011.

Uddin F, Rudin CM, Sen T. CRISPR gene therapy: applications limitations and implications for the future. Front Oncol. 2020;10:1387. doi: 10.3389/fonc.2020.01387, PMID 32850447.

Schacker M, Seimetz D. From fiction to science: clinical potentials and regulatory considerations of gene editing. Clin Transl Med. 2019 Dec;8(1):27. doi: 10.1186/s40169-019-0244-7, PMID 31637541.

Anurogo D, Yuli Prasetyo Budi N, Thi Ngo MH, Huang YH, Pawitan JA. Cell and gene therapy for anemia: hematopoietic stem cells and gene editing. Int J Mol Sci. 2021 Jun 2;22(12):6275. doi: 10.3390/ijms22126275, PMID 34200975.

Park SH, Bao G. CRISPR/Cas9 gene editing for curing sickle cell disease. Transfus Apher Sci. 2021;60(1):103060. doi: 10.1016/j.transci.2021.103060, PMID 33455878.

Bhoopalan SV, Yen JS, Levine RM, Sharma A. Editing human hematopoietic stem cells: advances and challenges. Cytotherapy. 2023 Mar 1;25(3):261-9. doi: 10.1016/j.jcyt.2022.08.003, PMID 36123234.

Hirakawa MP, Krishnakumar R, Timlin JA, Carney JP, Butler KS. Gene editing and CRISPR in the clinic: current and future perspectives. Biosci Rep. 2020;40(4). doi: 10.1042/BSR20200127, PMID 32207531.

Cerci B, Uzay IA, Kara MK, Dincer P. Clinical trials and promising preclinical applications of CRISPR/cas gene editing. Life Sci. 2023 Jan 1;312:121204. doi: 10.1016/j.lfs.2022.121204, PMID 36403643.

Papizan JB, Porter SN, Sharma A, Pruett Miller SM. Therapeutic gene editing strategies using CRISPR-Cas9 for the β-hemoglobinopathies. J Biomed Res. 2021;35(2):115-34. doi: 10.7555/JBR.34.20200096.

Hahn E, Hiemenz M. Therapeutic gene editing with CRISPR: a laboratory medicine perspective. Clin Lab Med. 2020;40(2):205-19. doi: 10.1016/j.cll.2020.02.008, PMID 32439069.

Sun J, Wang J, Zheng D, Hu X. Advances in therapeutic application of CRISPR-Cas9. Brief Funct Genomics. 2020 May 1;19(3):164-74. doi: 10.1093/bfgp/elz031, PMID 31769791.

Sahu S, Poplawska M, Lim SH, Dutta D. CRISPR based precision medicine for hematologic disorders: advancements challenges and prospects. Life Sci. 2023 Nov 15;333:122165. doi: 10.1016/j.lfs.2023.122165, PMID 37832631.

Ates I, Rathbone T, Stuart C, Bridges PH, Cottle RN. Delivery approaches for therapeutic genome editing and challenges. Genes. 2020;11(10):1-32. doi: 10.3390/genes11101113, PMID 32977396.

Burrage LC, Nagamani SC, Campeau PM, Lee BH. Branched chain amino acid metabolism: from rare mendelian diseases to more common disorders. Hum Mol Genet. 2014;23(R1):(R1-8). doi: 10.1093/hmg/ddu123, PMID 24651065.

Sahel DK, Mittal A, Chitkara D. CRISPR/Cas system for genome editing: progress and prospects as a therapeutic tool. J Pharmacol Exp Ther. 2019;370(3):725-35. doi: 10.1124/jpet.119.257287, PMID 31122933.

Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578(7794):229-36. doi: 10.1038/s41586-020-1978-5, PMID 32051598.

Jacinto FV, Link W, Ferreira BI. CRISPR/Cas9-mediated genome editing: from basic research to translational medicine. J Cell Mol Med. 2020;24(7):3766-78. doi: 10.1111/jcmm.14916, PMID 32096600.

Tavakoli K, Pour Aboughadareh A, Kianersi F, Poczai P, Etminan A, Shooshtari L. Applications of CRISPR-Cas9 as an advanced genome editing system in life sciences. BioTech (Basel). 2021;10(3). doi: 10.3390/biotech10030014, PMID 35822768.

Yip BH. Recent advances in CRISPR/Cas9 delivery strategies. Biomolecules. 2020;10(6). doi: 10.3390/biom10060839, PMID 32486234.

Lu X, Zhang M, Li G, Zhang S, Zhang J, Fu X. Applications and research advances in the delivery of CRISPR/Cas9 systems for the treatment of inherited diseases. Int J Mol Sci. 2023;24(17). doi: 10.3390/ijms241713202, PMID 37686009.

Tay LS, Palmer N, Panwala R, Chew WL, Mali P. Translating CRISPR-cas therapeutics: approaches and challenges. CRISPR J. 2020;3(4):253-75. doi: 10.1089/crispr.2020.0025, PMID 32833535.

Li J, Wu P, Cao Z, Huang G, Lu Z, Yan J. Machine learning-based prediction models to guide the selection of Cas9 variants for efficient gene editing. Cell Rep. 2024 Feb;43(2):113765. doi: 10.1016/j.celrep.2024.113765, PMID 38358884.

Li Y, Zaheri S, Nguyen K, Liu L, Hassanipour F, Pace BS. Machine learning-based approaches for identifying human blood cells harboring CRISPR-mediated fetal chromatin domain ablations. Sci Rep. 2022 Dec 1;12(1):1481. doi: 10.1038/s41598-022-05575-3, PMID 35087158.

Gimeno M, San Jose Eneriz E, Villar S, Agirre X, Prosper F, Rubio A. Explainable artificial intelligence for precision medicine in acute myeloid leukemia. Front Immunol. 2022 Sep 29;13:977358. doi: 10.3389/fimmu.2022.977358, PMID 36248800.

Saxena V, Singh A. An update on bio-potentiation of drugs using natural options. Asian J Pharm Clin Res. 2020 Nov 7;13(11):25-32. doi: 10.22159/ajpcr.2020.v13i11.38889.

Radhika Reddy M, Shiva Gubbiyappa K. A comprehensive review on supersaturable self-nanoemulsifying. Drug Deliv Syst. 2021;14(8). doi: 10.22159/ajpcr.2021v14i8.41987.

Solayappan M, Azlan A, Khor KZ, Yik MY, Khan M, Yusoff NM. Utilization of CRISPR-mediated tools for studying functional genomics in hematological malignancies: an overview on the current perspectives challenges and clinical implications. Front Genet. 2021;12:767298. doi: 10.3389/fgene.2021.767298, PMID 35154242.

Reddy OL, Savani BN, Stroncek DF, Panch SR. Advances in gene therapy for hematologic disease and considerations for transfusion medicine. Semin Hematol. 2020;57(2):83-91. doi: 10.1053/j.seminhematol.2020.07.004, PMID 32892847.

Bhattacharjee G, Gohil N, Khambhati K, Mani I, Maurya R, Karapurkar JK. Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. J Control Release. 2022 Mar 1;343:703-23. doi: 10.1016/j.jconrel.2022.02.005, PMID 35149141.

Published

01-09-2024

How to Cite

PANDA, A. R., and S. DAS. “CRISPR-CAS9-MEDIATED EX VIVO GENE EDITING FOR INHERITED HEMATOLOGICAL DISORDERS: ADVANCEMENTS, CHALLENGES, AND CLINICAL POTENTIAL”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 16, no. 09, Sept. 2024, pp. 1-7, doi:10.22159/ijpps.2024v16i9.51048.

Issue

Section

Review Article(s)