PROBIOTIC AND β-LACTAM SENSITIVITY ASSESSMENT OF LACTIC ACID BACTERIA ISOLATED FROM TRADITIONALLY FERMENTED PRODUCTS OF MEGHALAYA

Authors

  • RAKESH GHOSH Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong-793022, Meghalaya, India https://orcid.org/0009-0006-1444-3007
  • AAWAJ KULOONG RAI Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong-793022, Meghalaya, India https://orcid.org/0000-0003-3913-1182
  • S. R. JOSHI Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong-793022, Meghalaya, India https://orcid.org/0009-0006-1444-3007

DOI:

https://doi.org/10.22159/ijpps.2024v16i12.52716

Keywords:

Tungtap, Lungsiej, Ethnic products, Lactic acid bacteria, Antibiotic resistance, β-lactam resistance

Abstract

Objective: The present study aimed to isolate, identify, and analyze the probiotic properties and β-lactam sensitivity in the Lactic Acid Bacteria (LAB) prevalent in Tungtap and Lung-seij, common traditionally fermented ethnic products throughout Meghalaya.

Methods: Bacterial pure colonies were identified using conventional biochemical tests and 16S rRNA Sanger sequencing. Slightly modified standard protocols were followed for the assessment of different probiotic properties.

Results: The selected LAB isolates were found Gram-positive, catalase, and oxidase-negative, and exhibited resistance to most of the β-lactam antibiotics used in this study. No significant antibacterial activity was shown against tested strains. However, they showed strong bile salt and acid tolerance, as well as high auto aggregation and moderate hydrophobicity properties, which represent their probiotics properties. Extracellular Polymeric Substances (EPS) yield was highest for the TT2 isolate, while TT10 showed maximal siderophore production. Biofilm formation varied, with BS2 and BS5 showing strong adherence. Sequencing results confirm that the majority of the isolates belonged to the Lactiplantibacillus and Ligilactibacillus genera. Moreover, further genetic analysis confirmed the presence of β-lactamase genes in the selected isolates.

Conclusion: The presence of these genes suggests that the isolates may become reservoirs for Antimicrobial Resistance Genes (ARG) in traditional fermented foods. Further study is required to establish whether the isolates are transmitting their antimicrobial resistance genes during co-culture, under different stress conditions and transportation.

Downloads

Download data is not yet available.

References

Pohsnem JM, Ramakrishnan E, Parasar DP. Fermented food products in the Himalayan belt (North East India) and their health benefits. International Journal of Gastronomy and Food Science. 2023 Mar;31:100676.doi:10.1016/j.ijgfs.2023.100676

Vinayamohan PG, Viju LS, Joseph D, Venkitanarayanan K. Fermented Foods as a Potential vehicle of antimicrobial-resistant bacteria and genes. Fermentation. 2023 Jul 22;9(7):688. doi:10.3390/fermentation9070688

Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J, Bai X, Xie J, Wang Y, Geng W. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front BioengBiotechnol. 2021 May;9:612285. doi: 10.3389/fbioe.2021.612285.

Leech J, Cabrera-Rubio R, Walsh AM, Macori G, Walsh CJ, Barton W, et al. Fermented-food metagenomics reveals substrate-associated differences in taxonomy and health-associated and antibiotic resistance determinants.mSystems. 2020 Dec 22;5(6):e00522-20. doi:10.1128/mSystems.00522-20.

Xu H, Jeong HS, Lee HY, Ahn J. Assessment of cell surface properties and adhesion potential of selected probiotic strains. Letters in Applied Microbiology. 2009 Oct;49(4):434–42. doi:10.1111/j.1472-765X.2009.02684.

Del Re B, Sgorbati B, Miglioli M, Palenzona D. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacteriumlongum. Lett Appl Microbiol. 2000 Dec;31(6):438–42. doi:10.1046/j.1365-2672.2000.00845.x

Ramos IM, Seseña S, Poveda JM, Palop ML. Screening of lactic acid bacteria strains to improve the properties of non-fat set yogurt by in situEPS production. Food Bioprocess Technol. 2023 Nov;16(11):2541–58. doi:10.1007/s11947-023-03080-7

Joshi SR, Koijam K. Exopolysaccharide Production by a lactic acid bacteria, Leuconostoclactisisolated from ethnically fermented beverage. Natl Acad Sci Lett. 2014 Feb;37(1):59–64. doi:10.1007/s40009-013-0203-6

Tamboli FA, More HN, Bhandugare SS, Patil AS, Jadhav NR, Killedar SG. Estimation of Total Carbohydrate content by phenol sulphuric acid method from Eichhorniacrassipes (Mart.) Solms. Asian Journal of Research in Chemistry. 2020;13(5):357–9. doi:10.5958/0974-4150.2020.00067.x

Vinderola CG, Reinheimer JA. Lactic acid starter and probiotic bacteria: a comparative “invitro” study of probiotic characteristics and biological barrier resistance. Food Research International. 2003 Jan;36(9–10):895–904. doi:10.1016/S0963-9969(03)00098-X

Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry. 1987 Jan;160(1):47–56. doi:10.1016/0003-2697(87)90612-9

Qing-Ping Hu. A simple double-layered chrome azurol S agar (SD-CASA) plate assay to optimize the production of siderophores by a potential biocontrol agent Bacillus. Afr J Microbiol Res [Internet]. 2011 Nov 9 [cited 2024 Jul 10];5(25).doi:10.5897/AJMR11.238.

León-Sicairos N, Angulo-Zamudio UA, de la Garza M, Velázquez-Román J, Flores-Villaseñor HM, Canizalez-Román A. Strategies of Vibrioparahaemolyticus to acquire nutritional iron during host colonization. Front Microbiol. 2015 Jul 9;6:702. doi: 10.3389/fmicb.2015.00702. PMID: 26217331; PMCID: PMC4496571.

Alshaikh SA, El-banna T, Sonbol F, Farghali MH. Correlation between antimicrobial resistance, biofilm formation, and virulence determinants in uropathogenicEscherichiacolifrom Egyptian hospital. Ann Clin MicrobiolAntimicrob. 2024 Feb 24;23(1):20. doi:10.1186/s12941-024-00679-2

Coffey BM, Anderson GG. Biofilm Formation in the 96-Well Microtiter Plate. In: Filloux A, Ramos JL, editors. Pseudomonas Methods and Protocols. New York, NY: Springer New York; 2014 [2024 Jun 26]. p. 631–41. (Methods in Molecular Biology; vol. 1149). doi:10.1007/978-1-4939-0473-0_48.

Fredheim EGA, Klingenberg C, Rohde H, Frankenberger S, Gaustad P, Flægstad T, et al. Biofilm Formation by Staphylococcushaemolyticus. J Clin Microbiol. 2009 Apr;47(4):1172–80. doi:10.1128/JCM.01891-08

Chalita M, Kim YO, Park S, Oh HS, Cho JH, Moon J, et al. EzBioCloud: a genome-driven database and platform for microbiome identification and discovery. International Journal of Systematic and Evolutionary Microbiology. 2024 Jul 11;74(6). doi:10.1099/ijsem.0.006421

Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Battistuzzi FU, editor. Molecular Biology and Evolution. 2021 Jun 25;38(7):3022–7. doi:10.1093/molbev/msab120

Rokon-Uz-Zaman Md, Bushra A, Pospo TA, Runa MA, Tasnuva S, Parvin MstS, et al. Detection of antimicrobial resistance genes in Lactobacillus spp. from poultry probiotic products and their horizontal transfer among Escherichia coli. Veterinary and Animal Science. 2023 Jun;20:100292. doi:10.1016/j.vas.2023.100292

Cockerill FR, Clinical and Laboratory Standards Institute, editors. Performance standards for antimicrobial susceptibility tests: approved standard - eleventh edition. Wayne, Pa: CLSI; 2012. 58 p. (Clinical and Laboratory Standards Institute). Nascimento LCS, Casarotti SN, Todorov SD, Penna ALB. Probiotic potential and safety of enterococci strains. Ann Microbiol. 2019;69(3):241-252. doi:10.1007/s13213-018-1412-5

Nascimento LCS, Casarotti SN, Todorov SD, Penna ALB. Probiotic potential and safety of enterococci strains. Ann Microbiol. 2019 Mar;69(3):241–52. doi:10.1007/s13213-018-1412-5

Stefańska I, Kwiecień E, Jóźwiak-Piasecka K, Garbowska M, Binek M, Rzewuska M. Antimicrobial susceptibility of lactic acid bacteria strains of potential use as feed additives - the basic safety and usefulness criterion. Front Vet Sci. 2021 Jul 1;8:687071. doi:10.3389/fvets.2021.687071

Fernandes ML, Perin LM, Todorov SD, Nero LA, Alencar ERD, Ferreira MDA. In vitro evaluation of the safety and probiotic and technological potential of Pediococcuspentosaceus isolated from sheep milk. SCA. 2018 Feb 16;39(1):113. doi:10.5433/1679-0359.2018v39n1p113

Hu PL, Yuan YH, Yue TL, Guo CF. Bile acid patterns in commercially available oxgall powders used for the evaluation of the bile tolerance ability of potential probiotics. Shukla P, editor. PLoS ONE. 2018 Mar 1;13(3):e0192964. doi:10.1371/journal.pone.0192964

Wang YC, Huang TW, Yang YS, Kuo SC, Chen CT, Liu CP, et al. Biofilm formation is not associated with worse outcome in Acinetobacter baumanniibacteraemic pneumonia. Sci Rep. 2018 May 8;8(1):7289. doi:10.1038/s41598-018-25661-9

Guan N, Liu L. Microbial response to acid stress: mechanisms and applications. Appl MicrobiolBiotechnol. 2020 Jan;104(1):51–65. doi:10.1007/s00253-019-10226-1

Trunk T, S. Khalil H, C. Leo J, Bacterial cell surface group, section for genetics and evolutionary biology, Department of Biosciences, University of Oslo, Oslo, Norway. Bacterial autoaggregation. AIMS Microbiology. 2018;4(1):140–64. doi:10.3934/microbiol.2018.1.140

Cisneros L, Cattelan N, Villalba MI, Rodriguez C, Serra DO, Yantorno O, et al. Lactic acid bacteria biofilms and their ability to mitigate Escherichia coli O157:H7 surface colonization. Lett Appl Microbiol. 2021 Aug;73(2):247–56. doi:10.1111/lam.13509

Roldán-Pérez S, Gómez Rodríguez SL, Sepúlveda-Valencia JU, Ruiz Villadiego OS, Márquez Fernández ME, Montoya Campuzano OI, et al. Assessment of probiotic properties of lactic acid bacteria isolated from an artisanal Colombian cheese. Heliyon. 2023 Nov;9(11):e21558. doi:10.1016/j.heliyon.2023.e21558

Luan C, Jiang N, Zhou X, Zhang C, Zhao Y, Li Z, et al. Antibacterial and anti-biofilm activities of probiotic Lactobacillus curvatus BSF206 and Pediococcuspentosaceus AC1-2 against Streptococcus mutans. Microbial Pathogenesis. 2022 Mar;164:105446. doi:10.1016/j.micpath.2022.105446

Milanović V, Osimani A, Garofalo C, Belleggia L, Maoloni A, Cardinali F, et al. Selection of cereal-sourced lactic acid bacteria as candidate starters for the baking industry. Matsakas L, editor. PLoS ONE. 2020 Jul 23;15(7):e0236190. doi:10.1371/journal.pone.0236190

Eyoh AB, Toukam M, Atashili J, Fokunang C, Gonsu H, Lyonga EE, et al. Relationship between multiple drug resistance and biofilm formation in Staphylococcus aureus isolated from medical and non-medical personnel in Yaounde, Cameroon. Pan Afr Med J. 2014;17. doi:10.11604/pamj.2014.17.186.2363

Echegaray N, Yilmaz B, Sharma H, Kumar M, Pateiro M, Ozogul F, et al. A novel approach to Lactiplantibacillus plantarum: from probiotic properties to the omics insights. Microbiological Research. 2023 Mar;268:127289. doi:10.1016/j.micres.2022.127289.

Tohno M, Tanizawa Y, Sawada H, Sakamoto M, Ohkuma M, Kobayashi H. A novel species of lactic acid bacteria, Ligilactobacilluspabuli sp. nov., isolated from alfalfa silage. International Journal of Systematic and Evolutionary Microbiology. 2022 Oct 21;72(10). doi:10.1099/ijsem.0.005587.

Published

09-11-2024

How to Cite

GHOSH, R., A. K. RAI, and S. R. JOSHI. “PROBIOTIC AND β-LACTAM SENSITIVITY ASSESSMENT OF LACTIC ACID BACTERIA ISOLATED FROM TRADITIONALLY FERMENTED PRODUCTS OF MEGHALAYA”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 16, no. 12, Nov. 2024, doi:10.22159/ijpps.2024v16i12.52716.

Issue

Section

Original Article(s)