PROBIOTIC AND β-LACTAM SENSITIVITY ASSESSMENT OF LACTIC ACID BACTERIA ISOLATED FROM TRADITIONALLY FERMENTED PRODUCTS OF MEGHALAYA
DOI:
https://doi.org/10.22159/ijpps.2024v16i12.52716Keywords:
Tungtap, Lungsiej, Ethnic products, Lactic acid bacteria, Antibiotic resistance, β-lactam resistanceAbstract
Objective: The present study aimed to isolate, identify, and analyze the probiotic properties and β-lactam sensitivity in the Lactic Acid Bacteria (LAB) prevalent in Tungtap and Lung-seij, common traditionally fermented ethnic products throughout Meghalaya.
Methods: Bacterial pure colonies were identified using conventional biochemical tests and 16S rRNA Sanger sequencing. Slightly modified standard protocols were followed for the assessment of different probiotic properties.
Results: The selected LAB isolates were found Gram-positive, catalase, and oxidase-negative and exhibited resistance to most of the β-lactam antibiotics used in this study. No significant antibacterial activity was shown against tested strains. However, they showed strong bile salt and acid tolerance, as well as high auto aggregation and moderate hydrophobicity properties, which represent their probiotics properties. Extracellular Polymeric Substances (EPS) yield was highest for the TT2 isolate, while TT10 showed maximal siderophore production. Biofilm formation varied, with BS2 and BS5 showing strong adherence. Sequencing results confirm that the majority of the isolates belonged to the Lactiplantibacillus and Ligilactibacillus genera. Moreover, further genetic analysis confirmed the presence of β-lactamase genes in the selected isolates.
Conclusion: The presence of these genes suggests that the isolates may become reservoirs for Antimicrobial Resistance Genes (ARG) in traditional fermented foods. Further study is required to establish whether the isolates are transmitting their antimicrobial resistance genes during co-culture under different stress conditions and transportation.
Downloads
References
Pohsnem JM, Ramakrishnan E, Parasar DP. Fermented food products in the Himalayan belt (North East India) and their health benefits. Int J Gastronomy Food Sci. 2023 Mar;31:100676. doi: 10.1016/j.ijgfs.2023.100676.
Vinayamohan PG, Viju LS, Joseph D, Venkitanarayanan K. Fermented Foods as a Potential vehicle of antimicrobial-resistant bacteria and genes. Fermentation. 2023 Jul 22;9(7):688. doi: 10.3390/fermentation9070688.
Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front Bioeng Biotechnol. 2021 May;9:612285. doi: 10.3389/fbioe.2021.612285, PMID 34055755.
Leech J, Cabrera Rubio R, Walsh AM, Macori G, Walsh CJ, Barton W. Fermented-food metagenomics reveals substrate-associated differences in taxonomy and health-associated and antibiotic resistance determinants. mSystems. 2020 Dec 22;5(6):e00522-20. doi: 10.1128/mSystems.00522-20, PMID 33172966.
Xu H, Jeong HS, Lee HY, Ahn J. Assessment of cell surface properties and adhesion potential of selected probiotic strains. Lett Appl Microbiol. 2009 Oct;49(4):434-42. doi: 10.1111/j.1472-765X.2009.02684.x, PMID 19725886.
Del Re B, Sgorbati B, Miglioli M, Palenzona D. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol. 2000 Dec;31(6):438-42. doi: 10.1046/j.1365-2672.2000.00845.
Ramos IM, Sesena S, Poveda JM, Palop ML. Screening of lactic acid bacteria strains to improve the properties of non-fat set yogurt by in situ EPS production. Food Bioprocess Technol. 2023 Nov;16(11):2541-58. doi: 10.1007/s11947-023-03080-7.
Joshi SR, Koijam K. Exopolysaccharide production by a lactic acid bacteria, leuconostoc lactis isolated from ethnically fermented beverage. Natl Acad Sci Lett. 2014 Feb;37(1):59-64. doi: 10.1007/s40009-013-0203-6.
Tamboli FA, More HN, Bhandugare SS, Patil AS, Jadhav NR, Killedar SG. Estimation of Total carbohydrate content by phenol sulphuric acid method from Eichhornia crassipes (Mart.) solms. Asian J Res Chem. 2020;13(5):357-9. doi: 10.5958/0974-4150.2020.00067.
Vinderola CG, Reinheimer JA. Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int. 2003 Jan;36(9-10):895-904. doi: 10.1016/S0963-9969(03)00098-X.
Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987 Jan;160(1):47-56. doi: 10.1016/0003-2697(87)90612-9, PMID 2952030.
Hu QP. A simple double-layered chrome azurol sagar (SD-CASA) plate assay to optimize the production of siderophores by a potential biocontrol agent Bacillus. Afr J Microbiol Res. 2011 Nov 9;5(25). doi: 10.5897/AJMR11.238.
Leon Sicairos N, Angulo Zamudio UA, de la Garza M, Velazquez Roman J, Flores Villasenor HM, Canizalez Roman A. Strategies of Vibrio parahaemolyticus to acquire nutritional iron during host colonization. Front Microbiol. 2015 Jul 9;6:702. doi: 10.3389/fmicb.2015.00702, PMID 26217331, PMCID PMC4496571.
Alshaikh SA, El-banna T, Sonbol F, Farghali MH. Correlation between antimicrobial resistance, biofilm formation, and virulence determinants in uropathogenic Escherichia coli from Egyptian hospital. Ann Clin Microbiol Antimicrob. 2024 Feb 24;23(1):20. doi: 10.1186/s12941-024-00679-2, PMID 38402146.
Coffey BM, Anderson GG. Biofilm formation in the 96-well microtiter plate. In: Filloux A, Ramos JL, editors. Pseudomonas methods and protocols. New York: Springer; 2014 Jun 26. p. 631-41. doi: 10.1007/978-1-4939-0473-0_48, PMID 24818938.
Fredheim EG, Klingenberg C, Rohde H, Frankenberger S, Gaustad P, Flaegstad T. Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol. 2009 Apr;47(4):1172-80. doi: 10.1128/JCM.01891-08, PMID 19144798.
Chalita M, Kim YO, Park S, Oh HS, Cho JH, Moon J. EzBioCloud: a genome-driven database and platform for microbiome identification and discovery. Int J Syst Evol Microbiol. 2024 Jul 11;74(6). doi: 10.1099/ijsem.0.006421, PMID 38888585.
Tamura K, Stecher G, MEGA KS. Molecular evolutionary genetics analysis. Version 11 Battistuzzi FU, editor. Mol Biol Evol. 2021 Jun 25;38(7):3022-7. doi: 10.1093/molbev/msab120.
Rokon-Uz-Zaman M, Bushra A, Pospo TA, Runa MA, Tasnuva S, Parvin MS. Detection of antimicrobial resistance genes in lactobacillus spp. from poultry probiotic products and their horizontal transfer among Escherichia coli. Vet Anim Sci. 2023;20:100292. doi: 10.1016/j.vas.2023.100292, PMID 36942055.
Cockerill FR. Clinical and Laboratory Standards Institute, editors. Performance standards for antimicrobial susceptibility tests: approved standard-eleventh edition. Wayne PA. CLSI. Clinical and Laboratory Standards Institute; 2012. p. 58.
Nascimento LC, Casarotti SN, Todorov SD, Penna AL. Probiotic potential and safety of enterococci strains. Ann Microbiol. 2019;69(3):241-52. doi: 10.1007/s13213-018-1412-5.
Nascimento LC, Casarotti SN, Todorov SD, Penna AL. Probiotic potential and safety of enterococci strains. Ann Microbiol. 2019 Mar;69(3):241-52. doi: 10.1007/s13213-018-1412-5.
Stefanska I, Kwiecieb E, Jozwiak Piasecka K, Garbowska M, Binek M, Rzewuska M. Antimicrobial susceptibility of lactic acid bacteria strains of potential use as feed additives–the basic safety and usefulness criterion. Front Vet Sci. 2021 Jul 1;8:687071. doi: 10.3389/fvets.2021.687071, PMID 34277757.
Fernandes ML, Perin LM, Todorov SD, Nero LA, Alencar ER, Ferreira MD. In vitro evaluation of the safety and probiotic and technological potential of Pediococcus pentosaceus isolated from sheep milk. SCA. 2018 Feb 16;39(1):113. doi: 10.5433/1679-0359.2018v39n1p113.
Hu PL, Yuan YH, Yue TL, Guo CF. Bile acid patterns in commercially available oxgall powders used for the evaluation of the bile tolerance ability of potential probiotics. PLOS ONE. 2018 Mar 1;13(3):e0192964. doi: 10.1371/journal.pone.0192964, PMID 29494656.
Wang YC, Huang TW, Yang YS, Kuo SC, Chen CT, Liu CP. Biofilm formation is not associated with worse outcome in acinetobacter baumannii bacteraemic pneumonia. Sci Rep. 2018 May 8;8(1):7289. doi: 10.1038/s41598-018-25661-9, PMID 29740176.
Guan N, Liu L. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol. 2020 Jan;104(1):51-65. doi: 10.1007/s00253-019-10226-1, PMID 31773206.
Trunk T, Khalil HS, Leo JC. Bacterial autoaggregation. AIMS Microbiol. 2018;4(1):140-64. doi: 10.3934/microbiol.2018.1.140, PMID 31294207.
Cisneros L, Cattelan N, Villalba MI, Rodriguez C, Serra DO, Yantorno O. Lactic acid bacteria biofilms and their ability to mitigate Escherichia coli O157:H7 surface colonization. Lett Appl Microbiol. 2021 Aug;73(2):247-56. doi: 10.1111/lam.13509, PMID 34008189.
Roldan Perez S, Gomez Rodriguez SL, Sepulveda Valencia JU, Ruiz Villadiego OS, Márquez Fernandez ME, Montoya Campuzano OI. Assessment of probiotic properties of lactic acid bacteria isolated from an artisanal Colombian cheese. Heliyon. 2023 Nov;9(11):e21558. doi: 10.1016/j.heliyon.2023.e21558, PMID 38027952.
Luan C, Jiang N, Zhou X, Zhang C, Zhao Y, Li Z. Antibacterial and anti-biofilm activities of probiotic Lactobacillus curvatus BSF206 and Pediococcus pentosaceus AC1-2 against Streptococcus mutans. Microb Pathog. 2022 Mar;164:105446. doi: 10.1016/j.micpath.2022.105446, PMID 35167954.
Milanovic V, Osimani A, Garofalo C, Belleggia L, Maoloni A, Cardinali F. Selection of cereal-sourced lactic acid bacteria as candidate starters for the baking industry. PLOS ONE. 2020 Jul 23;15(7):e0236190. doi: 10.1371/journal.pone.0236190, PMID 32702068.
Eyoh AB, Toukam M, Atashili J, Fokunang C, Gonsu H, Lyonga EE. Relationship between multiple drug resistance and biofilm formation in Staphylococcus aureus isolated from medical and non-medical personnel in Yaounde, Cameroon. Pan Afr Med J. 2014;17:186. doi: 10.11604/pamj.2014.17.186.2363, PMID 25396012.
Echegaray N, Yilmaz B, Sharma H, Kumar M, Pateiro M, Ozogul F. A novel approach to Lactiplantibacillus plantarum: from probiotic properties to the omics insights. Microbiol Res. 2023 Mar;268:127289. doi: 10.1016/j.micres.2022.127289, PMID 36571922.
Tohno M, Tanizawa Y, Sawada H, Sakamoto M, Ohkuma M, Kobayashi H. A novel species of lactic acid bacteria, Ligilactobacillus pabuli sp. nov., isolated from alfalfa silage. Int J Syst Evol Microbiol. 2022 Oct 21;72(10). doi: 10.1099/ijsem.0.005587, PMID 36269574.
Published
How to Cite
Issue
Section
Copyright (c) 2024 RAKESH GHOSH, AAWAJ KULOONG RAI, S. R. JOSHI
This work is licensed under a Creative Commons Attribution 4.0 International License.