A NOVEL APPROACH TO INCREASE THE BIOAVAILABILITY OF CANDESARTAN CILEXETIL BY PRONIOSOMAL GEL FORMULATION: IN-VITRO AND IN-VIVO EVALUATION
Keywords:
Bioavailability, Candesartan cilexetil, proniosomal gel, In-vitro diffusion studies, Entrapment efficiency, Span 60, Tween 60Abstract
Objective: The oral bioavailability of Candesartan cilexetil is less (<15%), so in this study an approach has been made to increase its bioavailability by proniosomal gel formulation.
Methods: The proniosomal formulation of Candesartan cilexetil was prepared by slurry method, using span 60 and Tween 60 as non-ionic surfactants, maltodextrin as carrier and cholesterol and soya lecithin as stabilizers. Prepared gel formulations were evaluated for compatibility study, entrapment efficiency, vesicle size, surface morphology, in-vitro diffusion studies, in-vitro skin permeation studies, in-vivo pharmacokinetics studies, various release kinetic studies and stability studies.
Results: FT-IR study showed no interaction between drugs and other excipients, drugs and excipients are compatible. Mean vesicles size of proniosome derived niosome was found in the range of 16.34 µm-32.48 µm and 7.25-16.45 µm before and after shaking. An optimized formulation A3 containing a 2:1 ratio of span 60 and cholesterol showed maximum entrapment (86.17%) and in-vitro drug release (93.8%) compared to other formulations. In-vitro skin permeation studies were carried out using Albino rat skin and results showed that formulation A3 exhibited 88.65% drug permeation in a steady-state manner over a period of 24 h with a flux value of 1.94 µg/cm2/h and enhancement ratio of 3.73. In-vivo pharmacokinetics studies of proniosomal gel formulation A3 showed a significant increase in bioavailability (1.425 folds) compared with an oral formulation of Candesartan cilexetil. Stability studies showed that proniosomal gel formulation was stable throughout its study period.
Conclusion: Physiochemically stable Candesartan cilexetil proniosomal gel was formulated, which could deliver significant amount of the drug across the skin in a steady-state manner for the prolong period of time in the treatment of hypertension.
Â
Downloads
References
Martinoho N, Christiane D, Reis CP. Recent advances in drug delivery systems. J Biomed Nanotechnol 2011;2:510-26.
Rangasamy M, Parthiban KG. Recent advances in novel drug delivery systems. Int J Res Ayurveda Pharm 2010;1:316-26.
Alsarra IA, Bosela AA, Ahmed SM, Mahrous GM. Proniosomes as a drug carrier for transdermal delivery of ketorolac. Eur J Pharm Biopharm 2005;59:485-90.
Akhilesh D, Faishal G, Kamant JV. Comparative study of carriers used in proniosomes. Int J Pharma Chem Sci 2012;1:164-73.
Nekkanti VK, Karatgi P, Prabhu R, Pillai R. Solid self-microemulsifying formulation for candesartan cilexetil. AAPS Pharm Sci Tech 2010;11:9-17.
Mohan H. Textbook of pathology. 6th edition; 2010. p. 685-6.
Sudhamani T, Ganesan V, Priyadarsini N, Radhakrishnan M. Formulation and evaluation of ibuprofen loaded maltodextrin based proniosome. Int J Biopharm 2010;1:75-81.
Ajay S, Jolly P, Rajesh P. Preparation, characterization, optimization, and stability studies of aceclofenac proniosomes. Iran J Pharm Res 2008;7:237-46.
Mittal S, Mittal A, Sharma K, Alam S. Proniosomes as a drug carrier for transdermal delivery of candesartan cilexetil. Int J Nano Stud Technol 2013;2:1-7.
Mohammed Haneefa KP, Anu A, Saraswathi R, Guru PM, Nayar C. Formulation and evaluation of herbal gel of Basella alba for wound healing activity. J Pharm Sci Res 2012;4:1642-8.
Solanki AB, Parikh JR. Preparation, optimization and characterization of ketoprofen proniosomes for transdermal delivery. Int J Pharm Sci Nanotechnol 2009;2:413-20.
Sundarapandian R, Challa MC, Yajamans S. Development and in-vitro permeation studies of proniosomal based transdermal delivery system of atenolol. Pak J Pharm Sci 2014;27:115-20.
Parthibarajan R, Rubinareichal C, Loganathan S. Formulation and evaluation of methotrexate proniosomal powder. Int J Pharm Pharm Sci 2012;4:175-8.
Baboota S, Shakeel F, Ahuja A, Ali J, Shafiq S. Design, development and evaluation of novel nano-emulsion formulation for transdermal potential of celecoxib. Acta Pharm 2007;57:315-32.
Xiao Y, Lin Z, Liu J, Zhang W, Wang L, Yu P. A transdermal microemulsion-based hydrogel of nisoldipine: preparation, in-vitro characterization and in-vivo pharmacokinetic evaluation. Asian J Pharm Sci 2012;7:316-28.
Jalalil MB, Adibkial K, Valizadeh H, Shadbad Mohammad RS, Nokhodchi A, Omidil Y, et al. Kinetic analysis of drug release from nanoparticles. J Pharm Pharm Sci 2008;11:167-77.
ICH Q1A (R2) Stability testing guidelines: Stability testing of new drug substances and products. Available from: URL: http://www.tga.health.gov.au/docs/pdf/euguide/inch/273699r2en.pdf. [Last accessed on 10 Nov 2008].