POTENTIAL CELL PROLIFERATION INHIBITOR ISOLATED FROM INDONESIAN BROWN ALGAE (PHAEOPHYTA)

Authors

  • Isma Kurniatanty School of Life Sciences and Technology, Institut Teknologi Bandung
  • Marselina I. Tan School of Life Sciences and Technology, Institut Teknologi Bandung
  • Tomas Ruml University of Chemistry and Technology
  • Sony Heru Sumarsono School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia

Keywords:

Brown algae, Phaeophyta, Brine shrimp lethality assay, Anticancer

Abstract

Objective: The objective of this study is to determine the toxic activity of n-hexane and ethyl acetate extracts of brown algae as anticancer candidates.

Methods: The brown algae were collected from West Java south coast, identified and then dried. The dry algae was then extracted by using n-hexane and ethyl acetate, filtered, then dried. The toxic activity of n-hexane and ethyl acetate extracts of five species brown algae was screened by using the brine shrimp lethality test (BSLT). The detection for chemical compound was carried out by placing the extracts on a Thin Layer Chromatography (TLC) plate and spraying them with several spray reagents such as Dragendorff, Citro boric acid, and vanillin-sulfuric acid.

Results: We identified five species of brown algae i.e.: Sargassum sp., Sargassum duplicatum J. G. Agardh, Sargassum myriocystum J. G. Agardh, Turbinaria ornata (Turner) J. G. Agardh, and Turbinaria decurrens Bory. Four of ten extracts had toxic activities, i.e.: n-hexane extract of Sargassum myriocystum J. G. Agardh (LC50= 273.28 µg/ml), n-hexane extract of Turbinaria ornata (Turner) J. G. Agardh (LC50= 320.4 µg/ml), n-hexane extract of Turbinaria decurrens Bory (LC50= 579.33 µg/ml), and the ethyl acetate extract of Sargassum sp. (LC50= 743.98 µg/ml), whereas Sargassum duplicatum J. G. Agardh was found to be less toxic (nontoxic) (LC50>1000 µg/ml). The active compound of this alga was detected in TLC is terpenoid.

Conclusions: N-hexane extract of Sargassum myriocystum J. G. Agardh showed the highest toxicity in the brine shrimp assay (LC50= 273.28 µg/ml).

 

Downloads

Download data is not yet available.

References

Gupta S, Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Tech 2011;22:315-26.

Smit AJ. Medical and pharmaceutical uses of seaweed natural product: a review. Jpn J Appl Phys 2004;16:245-62.

Dharmananda S. The nutritional and medical value of seaweeds in used in Chinese medicine; 2002. Available from: www.itmonline.org. [Last accessed on 2015 Jun 10].

Hong DD, Hien HTM. Nutritional analysis of vietnamese seaweeds for food and medicine. Biofactor 2004;22:323-5.

McLaughlin JL, Chang C, Smith DL. Simple bench-top bioassays (brine-shrimp and potato discs) for the discovery of plant antitumour compounds. In: Human medicinal agents from plants. Washington DC: American Chemical Society; 1999.

Ara J, Sultana V, Ehteshamul-Haque S, Qasim R, Ahmad VU. Cytotoxic activity of marine macro-algae on Artemia salina (Brine shrimp). Phytother Res 1999;13:304-7.

Stefanello MEA, Salvador MJ, Ito IY, Macari PAT. Avaliacao da atividade antimicrobial naecitotoxica de extratos de Gochnatia polymorphas sp. Floccose Brazil Pharmacol 2003;16:525-30.

Carballo JL, Hernandez-Inda ZL, Perez P, Garcia-Gravalos MD. A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnol 2002;2:1-5.

Aisa Y, Miyakawa Y, Nakazato T, Shibata H, Saito K, Ikeda Y, et al. Fucoidan induces apoptosis of human HS-sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways. Am J Hematol 2005;78:7-14.

Foley SA, Mulloy B, Tuohy MG. An unfractionated fucoidan from Ascophyllum nodosum: extraction, Characterization, and apoptotic effects in vitro. J Nat Prot 2011;74:1851–61.

Costa LS, Telles CBS, Oliveira RM, Nobre LTDB, Dantas-Santos N, Camara RBG, et al. Heterofucan from Sargassum filipendula induces apoptosis in HeLa Cells. Mar Drugs 2011;9:603-14.

Croci DO, Cumashi A, Ushakova NA, Preobrazhenskaya ME, Piccoli A, Totani L, et al. Fucans, but not Fucomannoglucuronans, determine the biological activities of sulfated polysaccharides from Laminaria saccharina brown seaweed. PLoS One 2011;6:1-10.

Peng J, Yuan JY, Wu CF, Wang JH. Fucoxanthin, a marine carotenoid present in brown seaweed and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs 2011;9:1806-28.

Zandi K, Tajbakhsh S, Nabipour I, Rastian Z, Yousefi F, Sharafian S, et al. In vitro antitumor activity of Gracilaria corticata (a red alga) against Jurkat and molt-4 human cancer cell lines. Afr J Biotechnol 2010;9:6787-90.

Khanavi M, Nabavi M, Sadat N, Shams AM, Sohrabipour J, Nabavi SMB, et al. Cytotoxic activity of some marine brown algae against cancer cell lines. Biol Res 2010;43:31-7.

Dias PF. Antiangiogenic and antitumoral properties of a polysaccharide isolated from the seaweed Sargassum stenophyllum. Cancer Chemother Pharmacol 2005;56:436-46.

Moosa MK. Sumber daya laut nusantara, keanekaragaman hayati laut dan pelestariannya. Lokakarya Keanekaragaman Hayati Laut. Pemanfatan secara lestari didasari penelitian dan penyelamatan. Jakarta: Widya Graha LIPI; 1999.

Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, Mclaughlin JL. Brine shrimp: a convenient general bioassay for the peninsular coast of India. Planta Med 1982;45:31-4.

Cunha IBS, Sawaya ACHF, Caetano FM, Schimizu MT, Marcucci MC, Drezza FT, et al. Factors that influence the yield and composition of Brazilian propolis extract. J Braz Chem Sci 2004;15:946-70.

Fathi E, Sefidkon F. Influence of drying and extraction method on yield and chemical composition of the essential oil of Eucalyptus sargentii. J Agric Sci Tech 2012;14:1035-45.

Ahmad A, Alkarkhi AFM, Hena S, Khim LH. Extraction, separation and identification of chemical ingredients of Elephantopus scaber, L. using factorial design of experiment. Int J Chem 2009;1:36-49.

Ebada SS, Lin WH, Proksch P. Bioactive sesterterpenes and triterpenes from marine sponges occurrence and pharmacological significance. Mar Drugs 2010;8:313-46.

Pereira DM, Cheel J, Areche C, San-Martin A, Rovirosa J, Silva LR, et al. Anti-proliferative activity of meroditerpenoids isolated from the brown alga Stypopodium flabelliforme against several cancer cell lines. Mar Drugs 2011;9:852-62.

Awad NE, Selim MA, Metawe HM, Matloub AA. Cytotoxic xenicane diterpenes from the brown alga Padina pavonia (L.) Gaill. Phytother Res 2008;22:1610-3.

Zubia M, Fabre MS, Kerjean V, Lann KL, Stiger-Pouvreau V, Fauchon M, et al. Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem 2009;116:693-701.

Sheu JH, Wang GH, Sung PJ, Duh CY. New cytotoxic oxygenated fucosterol from the brown Alga Turbinaria conoides. J Nat Prod 1999;62:224-7.

Tang HF, Yang-Hua Y, Yao XS, Xu QZ, Zhang SY, Lin HW. Bioactive steroids from the brown alga Sargassum carpophyllum. J Asian Nat Prod Res 2002;4:95-105.

da Silva HHG, Rocha C, Geris E, Filho ER, da Silva IG. Larvicidal activity of oil-resin fractions from the Brazilian medicinal plant Copaifera reticulate Ducke (Leguminosae-Caesalpinoideae) against Aedes aegypti (Diptera, Culicidae). Rev Soc Bras Med Trop 2007;40:264-7.

Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nat Chem Technol 2007;3:408-14.

Published

01-11-2015

How to Cite

Kurniatanty, I., M. I. Tan, T. Ruml, and S. H. Sumarsono. “POTENTIAL CELL PROLIFERATION INHIBITOR ISOLATED FROM INDONESIAN BROWN ALGAE (PHAEOPHYTA)”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, no. 11, Nov. 2015, pp. 140-3, https://journals.innovareacademics.in/index.php/ijpps/article/view/7993.

Issue

Section

Original Article(s)