• Povi Lawson Evi Laboratory of Physiology/Pharmacology University of Lome BP 1515 Togo
  • Aboudoulatif Diallo University of Lomé Faculty of Health Science
  • Batomayena Bakoma University of Lomé Faculty of Health Science
  • Serge Moukha Laboratory of Toxicology and Applied Hygiene 146, Rue Léo Saignat,33076 Bordeaux, France
  • KWASHIE EKLU GADEGBEKU Pharmacology University of Lome BP 1515 Togo
  • Kodjo Aklikokou Laboratory of Toxicology and Applied Hygiene 146, Rue Léo Saignat,33076 Bordeaux, France
  • Edmond Creppy Laboratory of Toxicology and Applied Hygiene 146, Rue Léo Saignat,33076 Bordeaux, France
  • Messanvi Gbeassor Pharmacology University of Lome BP 1515 Togo


Glucose toxicity, Neuroblastoma cells, Plants extract


Objective:In diabetes, chronic hyperglycemia causes damage (glucose toxicity) on some cells leading to micro and macro vascular complications. The aim of this study was to investigate the effect of antidiabetic plants extracts in high glucose concentration in vitro.

Methods: Phyllanthus amarus (whole plant), Vitex doniana (leaves), Tectona grandis (leaves and trunk bark) and Plumeria alba (roots) hydroalcoholic extract (at the concentrations of 6.25, 25, 75, 125, 250 and 500 µg/ml) were tested for their possible cytotoxicity using the 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on neuroblastoma cells lines in standard condition (extract alone) and high glucose concentration (extract+50 mM glucose).

Results: At concentrations of 6.25 and 25µg/ml, T. grandis bark and leaves and P. amarus induced a significant decrease (p<0.01; p<0.001) on cell viability as compared to controls. The decrease on cell viability was very pronounced in the presence of the extracts plus glucose 50 mM. P. amarus extract becomes increasingly toxic as the concentration of extract increased in the presence of glucose. With P. amarus at 125 µg/ml and glucose at 50 mM, there is no more viable cells in the medium. By contrast, T. grandis bark extract induced a significant reduction of the cytotoxicity in the presence of glucose compared to standard condition.

Conclusion:It appears that, only hydroalcoholic extract of T. grandis bark possesses neuroprotective activity in high glucose concentration.


Download data is not yet available.


Campos C. Chronic hyperglycemia and glucose toxicity: pathology and clinical sequelae. Postgrad Med 2012;124:6.

Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. J Am Med Assoc 2002;288:2579-88.

Di Carli MF, Janisse J, Grunberger G, Ager J. Role of chronic hyperglycemia inthe pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol 2003;41:1387-93.

Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047-53.

IDF International Diabetes Federation diabetes atlas 6th edition; 2013. p. 159.

Akakpo W, Tete-benissan A, Lawson-Evi P, Eklu-Gadegbeku k, Aklikokou K, Gbeassor M. Evaluation of hypoglycemic properties of hydro alcoholic extracts of the leaves and bark of Tectona grandis (Verbenaceae) Communication of Scientific Days of University of Lomé; 2012.

Lawson-Evi Povi, Eklu-Gadegbeku K, Agbonon A, Aklikokou K, Creppy EE, Gbéassor M. Antihyperglycemic activity of Phyllanthus Amarus (Schum and Thonn) In: Rats. J Res Sci Univ Lomé 2011;13:167-75.

Kadebe ZT, Bakoma B, Metowogo K, Lawson-Evi P, Eklu-Gadegbeku K, Aklikokou K, et al. Effects of Plumeria alba roots hydroalcoholic extract on some parameters of type 2 diabetes. Res J Med Plant 2014;8:140-8.

Bakoma B, Eklu-Gadegbeku K, Berké B, Agbonon A, Aklikokou A, Gbeassor M, et al. Effect of Bridelia ferruginea Benth (Euphorbiaceae) ethyl acetate and acetone fractions on insulin resistance in fructose drinking mice. J Ethnopharmacol 2014;153:896-9.

Lawson-Evi P, Bakoma B, Titrikou AH, Eklu-Gadegbeku K, Aklikokou K, Gbéassor M. Phytochemical screening and antioxidant and hypoglycemic of Coccoloba uvifera and Waltheria indica roots extract. Int J Pharm Pharm Sci 2015;7:279-83.

Creppy EE, Diallo A, Moukha S, Eklu-Gadegbeku C, Cros D. Study of epigenetic properties of poly (Hexa Methylene Biguanide) hydrochloride (PHMB). Int J Environ Res Public Health2014;11:8069-92.

LePage KT, Dickey RW, Gerwick WH, Jester EL, Murray TF. "On the use of neuro-2a neuroblastoma cells versus intact neurons in primary culture for neurotoxicity studies". Crit Rev Neurobiol 2005;17:27–50.

Ebrahimi M, Tavirani MR, Keshel SH, Raeisossadati R, Salavati BH, Daneshimehr F. Appraisal of fibroblast viability in different concentration of glucose as mimicry diabetic condition.J Paramed Sci 2011;2:4.

Rohde BH, Chiou GC. Effects of glucose on neuroblastoma in vitro and in vivo. J Pharm Sci 1987;76:366-70.

Russell JW, Golovoy D, Vincent AM, Mahendr P, Olzmann JA, Mentzer A, et al. High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J2002;16:1738-48.

Zhong W, Y Liu, Tian H. High glucose augments stress-induced apoptosis in ndothelial cells. J Geriatr Cardiol 2009;6:2.

Tchounwou CK, Yedjou CG, Farah I, Tchounwou PB. D-Glucose-Induced Cytotoxic, Genotoxic, and apoptotic effects on human breast adenocarcinoma (MCF-7) cells. J Cancer Sci Ther 2014;6:156-60.

Itharat A, Houghton PJ, Eno-Amooquaye E, Burke PJ, Sampson JH, Raman A. In vitro cytotoxic activity of thai medicinal plants used traditionally to treat cancer. J Ethnopharmacol 2004;90:33-8.

Prakash E, DK Gupta. Cytotoxic activities of extracts of medicinal plants of euphorbiacae family studied on seven human cancer cell lines. Univ J Plant Sci 2013;1:113-7.

Fujii H, Yokozawa T, Kim Y, Tohda C, Nonaka G. Protective effect of grap seeds polyphenols against high glucose induced oxidative stress. Biosci Biotechnol Biochem 2006;70:2104-11.

Talib WH, AM Mahasneh. Antiproliferative activity of plant extracts used against cancer in traditional medicine. Sci Pharm 2010;78;33–45.

Yordi EG, Pérez EM, Matos MJ, Villares EU. Antioxidant and pro-oxidant effects of polyphenolic compounds and structure-activity relationship evidence, Nutrition, Well-Being and Health. Dr Jaouad Bouayed. (Ed.); 2012.

Babich H, Schuck AG, Weisburg JH, Zuckerbraun HL. Research strategies in the study of the pro-oxidant nature of polyphenol nutraceuticals. J Toxicol 2011. [Article in Press]

Ezekwesili CN, Ogbunugafor HA, Ezekwesili–Ofili JO. Anti-diabetic activity of aqueous extracts of Vitex doniana Leaves and Cinchona calisaya bark in Alloxan–induced diabetic rats. Int J Trop Dis Health 2012;2:4.

Kadebe ZT. Study of the antidiabetic and antilipidemic effect of the total extract and fractions Plumeria alba linn. Sprague Dawley rats and ICR mice. University of lomé Thesis; 2014. p. 173.

Rajaram K. Antioxidant and antidiabetic activity of Tectona grandis linn. In alloxan induced albino rats. Asian J Pharm Clin Res 2013;6:174-7.



How to Cite

Evi, P. L., A. Diallo, B. Bakoma, S. Moukha, K. E. GADEGBEKU, K. Aklikokou, E. Creppy, and M. Gbeassor. “CYTOTOXICITY STUDY OF ANTIDIABETIC PLANTS ON NEUROBLASTOMA CELLS CULTURED AT NORMAL AND HIGH GLUCOSE LEVEL”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, no. 11, Nov. 2015, pp. 84-88,



Original Article(s)

Most read articles by the same author(s)