COMBINATORIAL EFFECT OF D-AMINOACIDS AND TETRACYCLINE AGAINST PSEUDOMONAS AERUGINOSA BIOFILM

Authors

  • H. Jayalekshmi Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P O, Kollam, Kerala, India
  • C. Harikrishnan Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P O, Kollam, Kerala, India
  • Sajin Sali Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P O, Kollam, Kerala, India
  • N. Kaushik Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P O, Kollam, Kerala, India
  • Norin Mary G. Victus Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P O, Kollam, Kerala, India
  • R. Anoop Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P O, Kollam, Kerala, India
  • T. M. Sarath Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P O, Kollam, Kerala, India
  • O. Athira Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P O, Kollam, Kerala, India
  • Geetha B. Kumar Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P O, Kollam, Kerala, India
  • Bipin Nair Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P O, Kollam, Kerala, India

DOI:

https://doi.org/10.22159/ijpps.2016v8i11.9531

Keywords:

D-amino acid, Tetracycline, Biofilm, P aeruginosa

Abstract

Objective: The present study attempted to evaluate the anti-biofilm activity of D-amino acids (D-AAs) on Pseudomonas aeruginosa and determine if the combination of D-AAs with tetracycline enhances the anti-biofilm activity in vitro and ex vivo.

Methods: Different D-AAs were tested for antibiofilm activity against wild type P. aeruginosa PAO1 and two multidrug resistant P. aeruginosa clinical strains in the presence of sub inhibitory concentrations of tetracycline using crystal violet microtitre plate assay. Results were further validated using in vitro wound dressing and ex vivo porcine skin models followed by cytotoxicity and hemocompatibility studies.

Results: D-tryptophan (5 mmol) showed 61 % reduction in biofilm formation of P. aeruginosa. Interestingly combinatorial effect of 5 mmol D-tryptophan and 0.5 minimum inhibitory concentration (MIC) (7.5µg/ml) tetracycline showed 90% reduction in biofilm formation. 5 mmol D-methionine shows 28 % reduction and combination with tetracycline shows 41% reduction in biofilm formation of P. aeruginosa. D-leucine and D-tyrosine alone or in combination with tetracycline did not show significant anti-biofilm activity. D tryptophan-tetracycline combination could reduce 80 % and 77 % reduction in biofilm formation in two multi drug resistant P. aeruginosa clinical strains. D-tryptophan-tetracycline-combination could also reduce 76% and 66% reduction in biofilm formation in wound dressing model and porcine skin explant respectively. The cytotoxicity and hemocompatibility studies did not show significant toxicity when this combination was used.

Conclusion: The results established the potential therapeutic application of D-tryptophan alone or in combination with tetracycline for treating biofilm associated clinical problems caused by P. aeruginosa.

Downloads

Download data is not yet available.

References

Høiby N, Bjarnsholt T, Givntskov M, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010;35:322-32.

Nagorska K, Bikowski M, Obuchowski M. Multicellular behavior and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful bio control agent. Acta Biochim Pol 2007;54:495–508.

Bjarnsholt T, Ciofu O, Molin S, Givskov M, Hoiby N. Applying insights from biofilm biology to drug development-can a new approach be developed? Nat Rev Drug Discovery 2013;12:791-808.

Van Delden C, Iglewski H. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerging Infect Dis 1998;4:551-60.

Sauer K, Cullen MC, Richard AH, Zeef LA, Davies DG, Gilbert P. Characterization of nutrient induced dispersion in P. aeruginosa PAO1 biofilm. J Bacteriol 2004;186:7312-26.

Karatan E, Watnick P. Signal regulatory networks andmaterials that build andbreak bacterial biofilm. Microbiol Mol Biol Rev 2009;73:310-47.

Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilm: a common cause of persistent infections. Science 1999;284:1318-22.

Rupp CJ, Fux CA, Stoodley P. Viscoelasticity of Staphylococcus aureus biofilm in response to fluid shear allows resistance to detachment and facilitates rolling migration. Appl Environ Microbiol 2005;71:2175-8.

Abraham J, Mansour C, Veledar E, Khan B, Lerakis S. Staphylococcus aureus bacteremia and endocarditis: the Grady Memorial Hospital experience with methicillin-sensitive S aureus and methicillin-resistant S aureus bacteremia. Am Heart J 2004;147:536-9.

Fatkenheuer G, Cornely O, Seifert H. Clinical management of catheter-related infections. Clin Microbiol Infect 2002;8:545-50.

Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. D-aminoacids trigger biofilm disassembly. Science 2010;328:627-29.

Hochbaum IA, Kolodkin-Gal I, Folston L, Kolter R, Aizen, Losick R. Inhibitory effect of D-amino acids on S. aureus biofilm development. J Bacteriol 2011;193:5616-22.

Brandenberg SK, Rodriguez JK, Mc Anulty JF, Murphy JC, Abbott LN, Schurr JM, et al. Tryptophan inhibits biofilm formation by P. aeruginosa. Antimicrob Agents Chemother 2013;57:1921-2.

Li H, Ye Y, Ling N, Wu Q, Zhang J. Inhibitory effect of D-tryptophan on biofilm development by the food borne pathogen Cronobactersakazakii. Int Dairy J 2015;49:125-9.

Xu D, Li Y, Gu TA. Synergistic D-tyrosine and tetrakishydroxy methyl phosphoniumsulphate biocide combination for the mitigation of SRB biofilm. World J Microbiol Biotechnol 2012;28:3067-74.

Campbell K, Claussen A, Meech R, Verhulst S, Fox D, Hughes L. D-methionine (D-met) significantly rescues noise-induced hearing loss: timing studies. Hear Res 2011;282:138-44.

Hartman AL, Santos P, O’ Riordan KJ, Stafstorm CE, Marie Hardwick J. Potent anti-seizure effect of D-leucine. Neurobiol Dis 2015;82:46-53.

Andrew MJ. Determination of minimum inhibitory concentration. J Antimicrob Chemother 2001;48:5-15.

AdonizioAL, Kong KF, Mathee K. Inhibition of quorum sensing controlled virulence factor production in P. aeruginosa by South Florida plant extract. Antimicrob Agents Chemother 2008;52:198-203.

Omanakuttan A, Nambiar J, Harris MR, Bose C, Pandurangan N, Varghese RK, et al. Anacardic acid inhibits the catalytic activity of matrix metalloproteinases-2 and metalloproteinases 9. Mol Pharmacol 2012;82:614-22.

Nataraj N, Anjusree GS, Madhavan AA, Priyanka P, Sankar D, Nisha N, et al. Synthesis and anti-staphylococcal activity of TiO2 nanoparticles and nanowires in Ex Vivo porcine skin model. J Biomed Nanotechnol 2013;9:1-7.

Hammond AA, Miller KG, Kruczek CJ, Dertien J, Colmer Hamood JA, Griswold JA, et al. An in vitro biofilm model to examine the effect of antibiotic ointments on biofilm produced by burn wound bacterial isolates. Burns 2011;37:312-21.

Yang Q, Phillips PL, Sampson EM, Progulske-Fox A, Jin S, Antonelli P, et al. Development of a novel ex vivo porcine skin explant model for the assessment of mature bacterial biofilm. Wound Repair Regeneration 2013;21:704-14.

Davey ME, O’Toole GA. Microbial biofilm: from ecology to molecular genetics. Microbiol Mol Biol Rev 2000;64:847-67.

Donlan RM, Costerton JW. Biofilm: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002;15:167-93.

Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discovery 2003;2:114-22.

Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol 2005;13:34-40.

Sanchez CJ Jr, Akers KS, Romano DR, Woodbury RL, Hardy SK, Murray CM, et al. D-amino acids enhance the activity of antimicrobials against biofilm of clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014;58:4353-61.

Sudano A, Roccaro AS, Blanco AR, Giulian F, Rusciano D, Enea V. Epigallocatechin-gallate enhances the activity of tetracycline in Staphylococci by inhibiting its efflux from bacterial cells. Antimicrob Agents Chemother 2004;48:1968-73.

Jayaraman P, Sakharkar KM, Lim CS, Tang TH, Kishore R, Sakharkar RK. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int J Biol Sci 2010;6:556-68.

Published

01-11-2016

How to Cite

Jayalekshmi, H., C. Harikrishnan, S. Sali, N. Kaushik, N. M. G. Victus, R. Anoop, T. M. Sarath, O. Athira, G. B. Kumar, and B. Nair. “COMBINATORIAL EFFECT OF D-AMINOACIDS AND TETRACYCLINE AGAINST PSEUDOMONAS AERUGINOSA BIOFILM”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 11, Nov. 2016, pp. 216-20, doi:10.22159/ijpps.2016v8i11.9531.

Issue

Section

Original Article(s)