NITRIC OXIDE MEDIATED NEURODEGENERATION IN PARKINSON'S DISEASE

Authors

  • Vaibhav Walia Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana
  • Santlal Kansotia Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana

DOI:

https://doi.org/10.22159/ajpcr.2016.v9i5.11667

Abstract

Nitric oxide (NO) is an endogenous molecule which functions as a neurotransmitter, hormone, free radical, etc. NO has been found to regulate the release of neurotransmitters, synaptic transmission, cell death, etc. NO is involved in the pathogenesis of various neuropsychiatric and neurodegenerative
disorders. NO plays a key role in cellular apoptosis and neuronal degeneration. Parkinson' disease (PD) is a neurodegenerative disorder characterized
by motor dysfunction that can be seen in the patients suffering from PD. The motor dysfunction is due to the progressive degeneration of dopaminergic
neurons in mid brain. Dopamine (DA) is highly reactive molecule and is prone to the oxidation very much. The oxidation of DA is accompanied by the production of the reactive oxygen species that activates microglia cells. Upon activation, microglia cells cause the upregulation of inducible NO synthase, the enzyme involved in the production of NO. NO thus plays a key role in the neurodegeneration process implicated in PD. Thus, the aim of the present manuscript is to describe the possible role of NO in PD.

Keywords: Dopamine, Neuromelanin, Nitric oxide, Parkinson.

Downloads

Download data is not yet available.

References

Machado A, Herrera AJ, Venero JL, Santiago M, de Pablos RM, Villarán RF, et al. Inflammatory animal model for Parkinson’s disease: The intranigral injection of LPS induced the inflammatory process along with the selective degeneration of nigrostriatal dopaminergic neurons. ISRN Neurol 2011;2011:476158.

Tufekci KU, Genc S, Genc K. The endotoxin-induced neuroinflammation model of Parkinson’s disease. Parkinsons Dis 2011;2011:487450.

Olivieri S, Conti A, Iannaccone S, Cannistraci CV, Campanella A, Barbariga M, et al. Ceruloplasmin oxidation, a feature of Parkinson’s disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J Neurosci 2011;31(50):18568-77.

Martin HL, Teismann P. Glutathione – A review on its role and significance in Parkinson’s disease. FASEB J 2009;23(10):3263-72.

Gaeta A, Hider RC. The crucial role of metal ions in neurodegeneration: The basis for a promising therapeutic strategy. Br J Pharmacol 2005;146(8):1041-59.

Zecca L, Tampellini D, Gerlach M, Riederer P, Fariello RG, Sulzer D. Substantia nigra neuromelanin: Structure, synthesis, and molecular behaviour. Mol Pathol 2001;54(6):414-8.

Offen D, Ziv I, Panet H, Wasserman L, Stein R, Melamed E, et al. Dopamine-induced apoptosis is inhibited in PC12 cells expressing Bcl-2. Cell Mol Neurobiol 1997;17:289-304.

Kavyaa R, Dikshitb M. Role of Nitric oxide/nitric oxide synthase in Parkinson’s disease. Ann Neurosci 2005;12(2):???.

Akyol O, Zoroglu SS, Armutcu F, Sahin S, Gurel A. Nitric oxide as a physiopathological factor in neuropsychiatric disorders. In Vivo 2004;18(3):377-90.

Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82(1):47-95.

Gautam P, Jain SK. Functions and significance of nitric oxide in pathophysiological processes. Indian J Biotech 2007;6(3):293-304.

Valko M, Leibfritz D, Moncola J, Cronin MT, Mazura M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39(1):44-84.

Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 2007;6(8):662-80.

Li X, Rose G, Chiari A, Pan HL, Tobin JR. Eisenach JC 6-NO(2)-norepinephrine increases norepinephrine release and inhibits norepinephrine uptake in rat spinal synaptosomes. J Pharmacol Exp Ther 2000;292(3):895-9.

Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease 2007;87(1):315-424.

Blantz RC, Munger K. Role of nitric oxide in inflammatory conditions. Nephron 2002;90(4):373-8.

Mayer B, Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci 1997;22(12):477-81.

Ito Y, Ohkubo T, Asano Y, Hattori K, Shimazu T, Yamazato M, et al. Nitric oxide production during cerebral ischemia and reperfusion in eNOS - And nNOS-knockout mice. Curr Neurovasc Res 2010;7(1):23-31.

Venema RC, Ju H, Zou R, Ryan JW, Venema VJ. Subunit interactions of endothelial nitric-oxide synthase. Comparisons to the neuronal and inducible nitric-oxide synthase isoforms. J Biol Chem 1997;272(2):1276-82.

Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: Structure, function and inhibition. Biochem J 2001;357:593-615.

Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: From short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 2009;89(2):481-534.

Yoneyama H, Yamamoto A, Kosaka H. Neuronal nitric oxide synthase generates superoxide from the oxygenase domain. Biochem J 2001;360:247-53.

Wink DA, Hines HB, Cheng RY, Switzer CH, Flores-Santana W, Vitek MP, et al. Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 2011;89(6):873-91.

Calabrese V, Boyd-Kimball D, Scapagnini G, Butterfield DA. Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: The role of vitagenes. In vivo 2004;18(3):245-67.

Liu CY, Xie DP, Liu JZ. Microinjection of glutamate into dorsal motor nucleus of the Vagus excites gallbladder motility through NMDA receptor - Nitric oxide - cGMP pathway. Neurogastroenterol Motil 2004;16(3):347-53.

Brenman JE, Bredt DS. Synaptic signaling by nitric oxide. Curr Opin Neurobiol 1997;7(3):374-8.

Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 1988;336(6197):385-8.

Bronk P, Deák F, Wilson MC, Liu X, Südhof TC, Kavalali ET. Differential effects of SNAP-25 deletion on Ca2 - Dependent and Ca2 - Independent neurotransmission. J Neurophysiol 2007;98(2):794-806.

Ohkuma S, Katsura M. Nitric oxide and peroxynitrite as factors to stimulate neurotransmitter release in the CNS. Prog Neurobiol 2001;64(1):97-108.

Friebe A, Koesling D. Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res 2003;93(2):96-105.

Ha KS, Kim KM, Kwon YG, Bai SK, Nam WD, Yoo YM, et al. Nitric oxide prevents 6-hydroxydopamine-induced apoptosis in PC12 cells through cGMP-dependent PI3 kinase/Akt activation. FASEB J 2003;17(9):1036-47.

Choi BM, Pae HO, Jang SI, Kim YM, Chung HT. Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J Biochem Mol Biol 2002;35(1):116-26.

Chung HT, Pae HO, Choi BM, Billiar TR, Kim YM. Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun

AQ1

;282(5):1075-9.

von Knethen A, Callsen D, Brüne B. NF-kappaB and AP-1 activation by nitric oxide attenuated apoptotic cell death in RAW 264.7 macrophages. Mol Biol Cell 1999;10(2):361-72.

Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 1999;84(3):253-6.

Gudi T, Casteel DE, Vinson C, Boss GR, Pilz RB. NO activation of fos promoter elements requires nuclear translocation of G-kinase I and CREB phosphorylation but is independent of MAP kinase activation. Oncogene 2000;19(54):6324-33.

Jean D, Harbison M, McConkey DJ, Ronai Z, Bar-Eli M. CREB and its associated proteins act as survival factors for human melanoma cells. J Biol Chem 1998;273(38):24884-90.

Ferrer P, Asensi M, Priego S, Benlloch M, Mena S, Ortega A, et al. Nitric oxide mediates natural polyphenol-induced Bcl-2 down-regulation and activation of cell death in metastatic B16 melanoma. J Biol Chem 2007;282(5):2880-90.

Takeda Y, Tashima M, Takahashi A, Uchiyama T, Okazaki T. Ceramide generation in nitric oxide-induced apoptosis. Activation of magnesium-dependent neutral sphingomyelinase via caspase-3. J Biol Chem 1999;274(15):10654-60.

Rudin CM, Thompson CB. Apoptosis and disease: Regulation and clinical relevance of programmed cell death. Annu Rev Med 1997;48:267-81.

Heyne K, Schmitt K, Mueller D, Armbruester V, Mestres P, Roemer K. Resistance of mitochondrial p53 to dominant inhibition. Mol Cancer 2008;7:54.

Chen X, Ko LJ, Jayaraman L, Prives C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev 1996;10(19):2438-51.

Rappold PM, Tieu K. Astrocytes and therapeutics for Parkinson’s disease. Neurotherapeutics 2010;7(4):413-23.

Reed MC, Thomas RL, Pavisic J, James J, Ulrich CM, Nijhout HF. A mathematical model of glutathione metabolism. Theor Biol Med Model 2008;5:8.

Chakravarthi S, Jessop CE, Bulleid NJ. The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep 2006;7(3):271-5.

Zhu Y, Carvey PM, Ling Z. Altered glutathione homeostasis in animals prenatally exposed to lipopolysaccharide. Neurochem Int 2007;50(4):671-80.

Sen CK. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem Pharmacol 1998;55(11):1747-58.

Franco R, Cidlowski JA. Apoptosis and glutathione: Beyond an antioxidant. Cell Death Differ 2009;16(10):1303-14.

Vanuffelen BE, Van Der Zee J, De Koster BM, Vansteveninck J, Elferink JG. Intracellular but not extracellular conversion of nitroxyl anion into nitric oxide leads to stimulation of human neutrophil migration. Biochem J 1998;330:719-22.

Zeng H, Spencer NY, Hogg N. Metabolism of S-nitrosoglutathione by endothelial cells. Am J Physiol Heart Circ Physiol 2001;281(1):H432-9.

Aquilano K, Baldelli S, Cardaci S, Rotilio G, Ciriolo MR. Nitric oxide is the primary mediator of cytotoxicity induced by GSH depletion in neuronal cells. J Cell Sci 2011;124:1043-54.

Ciriolo MR, De Martino A, Lafavia E, Rossi L, Carrì MT, Rotilio G. Cu, Zn-superoxide dismutase-dependent apoptosis induced by nitric oxide in neuronal cells. J Biol Chem 2000;275(7):5065-72.

Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzellie S, et al. The chemical biology of nitric oxide. Implications in cellular signaling. Free Radic Biol Med 2008;45(1):18-31.

Lirk P, Hoffmann G, Rieder J. Inducible nitric oxide synthase – Time for reappraisal. Curr Drug Targets Inflamm Allergy 2002;1(1):89-108.

Aquilano K, Vigilanza P, Rotilio G, Ciriolo MR. Mitochondrial damage due to SOD1 deficiency in SH-SY5Y neuroblastoma cells: A rationale for the redundancy of SOD1. FASEB J 2006;20(10):1683-5.

Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 2003;22(37):5734-54.

Abe K, Aoki M, Kawagoe J, Yoshida T, Hattori A, Kogure K, et al. Ischemic delayed neuronal death. A mitochondrial hypothesis. Stroke 1995;26(8):1478-89.

Buckley BJ, Whorton AR. Adaptive responses to peroxynitrite: Increased glutathione levels and cystine uptake in vascular cells. Am J Physiol Cell Physiol 2000;279(4):C1168-76.

Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007;87(1):99-163.

Vernier P, Moret F, Callier S, Snapyan M, Wersinger C, Sidhu A. The degeneration of dopamine neurons in Parkinson’s disease: Insights from embryology and evolution of the mesostriatocortical system. Ann N Y Acad Sci 2004;1035(1):231-49.

Facecchia K, Fochesato LA, Ray SD, Stohs SJ, Pandey S. Oxidative toxicity in neurodegenerative diseases: Role of mitochondrial dysfunction and therapeutic Strategies. J Toxicol 2011;2011:683728.

Serra PA, Sciola L, Delogu MR, Spano A, Monaco G, Miele E, et al. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induces apoptosis in mouse nigrostriatal glia. Relevance to nigral neuronal death and striatal neurochemical changes. J Biol Chem 2002;277(37):34451-61.

Escames G, López A, García JA, García L, Acuña-Castroviejo D, García JJ, et al. The role of mitochondria in brain aging and the effects of melatonin. Curr Neuropharmacol 2010;8(3):182-93.

Kirkinezos IG, Moraes CT. Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol 2001;12:449-57.

Mounsey RB, Teismann P. Chelators in the treatment of iron accumulation in Parkinson’s disease. Int J Cell Biol 2012;2012:1-12.

Mazzio EA, Close F, Soliman KF. The biochemical and cellular basis for nutraceutical strategies to attenuate neurodegeneration in Parkinson’s disease. Int J Mol Sci 2011;12(1):506-69.

Suematsu N, Tsutsui H, Wen J, Kang D, Ikeuchi M, Ide T, et al. Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 2003;107:1418-23.

Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev 2000;80:315-60.

Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 2007;150(8):963-76.

Ischiropoulos H, Beckman JS. Oxidative stress and nitration in neurodegeneration: Cause, effect, or association? J Clin Invest 2003;111(2):163-9.

Hastings TG. The role of dopamine oxidation in mitochondrial dysfunction: Implications for Parkinson’s disease. J Bioenerg Biomembr 2009;41(6):469-72.

Norris EH, Giasson BI, Hodara R, Xu S, Trojanowski JQ, Ischiropoulos H, et al. Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome-mediated conformational alterations. J Biol Chem 2005;280(22):21212-9.

Zecca L, Wilms H, Geick S, Claasen JH, Brandenburg LO, Holzknecht C, et al. Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: Implications for Parkinson’s disease. Acta Neuropathol 2008;116(1):47-55.

García-Molina F, Fenoll LG, Morote JC, García-Ruiz PA, Rodríguez-López JN, García-Cánovas F, et al. Opposite effects of peroxidase in the initial stages of tyrosinase-catalysed melanin biosynthesis. Int J Biochem Cell Biol 2005;37(6):1179-96.

Double KL, Ben-Shachar D, Youdim MB, Zecca L, Riederer P, Gerlach M. Influence of neuromelanin on oxidative pathways within the human substantia nigra. Neurotoxicol Teratol 2002;24(5):621-8.

Antunes F, Nunes C, Laranjinha J, Cadenas E. Redox interactions of nitric oxide with dopamine and its derivatives. Toxicology 2005;208(2):207-12.

Li HT, Lin DH, Luo XY, Zhang F, Ji LN, Du HN, et al. Inhibition of alpha-synuclein fibrillization by dopamine analogs via reaction with the amino groups of alpha-synuclein. Implication for dopaminergic neurodegeneration. FEBS J 2005;272(14):3661-72.

Akagawa M, Ishii Y, Ishii T, Shibata T, Yotsu-Yamashita M, Suyama K, et al. Metal-catalyzed oxidation of protein-bound dopamine. Biochemistry 2006;45(50):15120-8.

Smythies J, Galzigna L. The oxidative metabolism of catecholamines in the brain: A review. Biochim Biophys Acta 1998;1380(2):159-62.

Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Prog Neurobiol 2005;76(2):77-98.

Farooqui T, Farooqui AA. Lipid-mediated oxidative stress and inflammation in the pathogenesis of Parkinson’s disease. Parkinsons Dis 2011;2011:247467.

Choi DY, Liu M, Hunter RL, Cass WA, Pandya JD, Sullivan PG, et al. Striatal neuroinflammation promotes Parkinsonism in rats. PLoS One 2009;4(5):e5482.

Zhou M, Wang CM, Yang WL, Wang P. Microglial CD14 activated by iNOS contributes to neuroinflammation in cerebral ischemia. Brain Res 2013;1506:105-14.

Warner DS, Sheng H, Batinic-Haberle I. Oxidants, antioxidants and the ischemic brain. J Exp Biol 2004;207:3221-31.

del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X,

Feuerstein GZ. Inflammation and stroke: Putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 2000;10(1):95-112.

Fattah DA, Khalifa N. Inflammatory biomarkers in patients with Parkinson’s disease: Correlations with clinical severity and levodopa therapy. Egypt J Neurol Psychiat Neurosurg 2011;48(2):111-6.

Medeiros R, Prediger RD, Passos GF, Pandolfo P, Duarte FS, Franco JL, et al. Connecting TNF-alpha signaling pathways to iNOS expression in a mouse model of Alzheimer’s disease: Relevance for the behavioral and synaptic deficits induced by amyloid beta protein. J Neurosci 2007;27(20):5394-404.

Li DP, Chen SR. Nitric oxide stimulates glutamatergic synaptic inputs to baroreceptor neurons through potentiation of Cav2.2-mediated Ca(2) currents. Neurosci Lett 2014;567:57-62.

Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: Contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 2001;65(2):135-72.

Carr AC, McCall MR, Frei B. Oxidation of LDL by myeloperoxidase and reactive nitrogen species: Reaction pathways and antioxidant protection. Arterioscler Thromb Vasc Biol 2000;20(7):1716-23.

Park S, Geddes TJ, Javitch JA, Kuhn DM. Dopamine prevents nitration of tyrosine hydroxylase by peroxynitrite and nitrogen dioxide: Is nitrotyrosine formation an early step in dopamine neuronal damage? J Biol Chem 2003;278(31):28736-42.

Ara J, Przedborski S, Naini AB, Jackson-Lewis V, Trifiletti RR, Horwitz J, et al. Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc Natl Acad Sci U S A 1998;95(13):7659-63.

Gow AJ, Farkouh CR, Munson DA, Posencheg MA, Ischiropoulos H. Biological significance of nitric oxide-mediated protein modifications. Am J Physiol Lung Cell Mol Physiol 2004;287(2):L262-8.

Pall ML. NMDA sensitization and stimulation by peroxynitrite, nitric oxide, and organic solvents as the mechanism of chemical sensitivity in multiple chemical sensitivity. FASEB J 2002;16(11):1407-17.

Duncan AJ, Heales SJ. Nitric oxide and neurological disorders. Mol Aspects Med 2005;26(1-2):67-96.

Leist M, Single B, Castoldi AF, Kühnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J Exp Med 1997;185(8):1481-6.

Lipton SA. Failures and successes of NMDA receptor antagonists: Molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx 2004;1(1):101-10.

Nakamura T, Lipton SA. Preventing Ca2 - Mediated nitrosative stress in neurodegenerative diseases: Possible pharmacological strategies. Cell Calcium 2010;47(2):190-7.

Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 2013;3(4):461-91.

Verche VL, Ikiz B, Jacquier A, Przedborski S, Re DB. Glutamate pathway implication in amyotrophic lateral sclerosis: What is the signal in the noise? J Recept Ligand Channel Res 2011;4:1-22.

Published

01-09-2016

How to Cite

Walia, V., and S. Kansotia. “NITRIC OXIDE MEDIATED NEURODEGENERATION IN PARKINSON’S DISEASE”. Asian Journal of Pharmaceutical and Clinical Research, vol. 9, no. 5, Sept. 2016, pp. 9-13, doi:10.22159/ajpcr.2016.v9i5.11667.

Issue

Section

Review Article(s)