• Nithya R Department of Biochemistry, University of Madras, Guindy Campus, Chennai - 600 025, Tamil Nadu, India
  • Subramanian S Department of Biochemistry, University of Madras, Guindy Campus, Chennai - 600 025, Tamil Nadu, India



Sinapic acid, High-fat diet-streptozotocin, Oxidative stress, Antioxidant, In vitro antioxidant assay


Objective: This study was aimed to evaluate the antioxidant potential of sinapic acid in both in vitro and in vivo. Recently, we have reported that oral administration of sinapic acid (3,5-dimethoxy 4-hydroxycinnamic acid) an active phyto ingredient widely distributed in rye, mustard, berries, and vegetables has been shown to ameliorate hyperglycemia.

Methods: Experimental Type 2 diabetes was induced in male Wistar rats by feeding high-fat diet to induce insulin resistance followed by intraperitoneal administration of a single low dose streptozotocin (35 mg/kg body weight [bw]). Sinapic acid was administered orally at a concentration of 25 mg/kg bw/rat/day for 30 days, and its efficacy was compared with metformin. In vitro, antioxidant scavenging properties of sinapic acid were determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), superoxide, and nitric oxide (NO) assay.

Results: Sinapic acid treatment showed a significant decline in the levels of lipid peroxides, hydroperoxides and protein carbonyls in the plasma and vital tissues of diabetic rats. The treatment also improved the antioxidant status in diabetic rats indicating the antioxidant potential of sinapic acid. In addition, the results of DPPH, ABTS, superoxide, and NO radical scavenging assays substantiate the free radical scavenging efficacy of sinapic acid.

Conclusion: The results of this study evidenced that sinapic acid possess significant antioxidant properties which in turn may be responsible for its antidiabetic properties.


Download data is not yet available.


Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and Type 2 diabetes mellitus. World J Diabetes 2015;6(3):456-80.

Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovasc Diabet 2005;4:5.

Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 2004;279(41):42351-4.

Robertson RP, Harmon JS. Diabetes, glucose toxicity, and oxidative stress: A case of double jeopardy for the pancreatic islet beta-cell. Free Radic Biol Med 2006;41(2):177-84.

Prentki M, Joly E, El-Assaad W, Roduit R. Malonyl-CoA signalling, lipid partitioning, and glucolipotoxicity: Role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes 2002;51 Suppl 3:S405-13.

Poitout V. Lipid partitioning in the pancreatic beta cell: Physiologic and pathophysiologic implications. Curr Opin Endocrinol Diabetes 2002;9:152-9.

Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40:405-12.

Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine. 4th ed. New York, NY, USA: Oxford University Press; 2007.

Gomes EC, Silva AN, de Oliveira MR. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxid Med Cell Longev 2012;2012:756132.

Freitas M, Gomes A, Porto G, Fernandes E. Nickel induces oxidative burst, NF-κB activation and interleukin-8 production in human neutrophils. J Biol Inorg Chem 2010;15(8):1275-83.

Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000;279(6):L1005-28.

Sen CK. Antioxidant and redox regulation of cellular signaling: Introduction. Med Sci Sports Exerc 2001;33(3):368-70.

Szaleczky E, Prechl J, Fehér J, Somogyi A. Alterations in enzymatic antioxidant defence in diabetes mellitus - A rational approach. Postgrad Med J 1999;75:13-7.

Nisha K, Deshwal RK. Antioxidants and their protective action against DNA damage. Int J Pharm Pharm Sci 2011;3:28-32.

Shivashankar M, Mani D. A brief overview of diabetes. Int J Pharm Pharm Sci 2011;3:22-7.

Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008;51:216-26.

Ortiz RR, Sanchez SJ, Navarrete VG, Webster SP, Binnie M, Garcia JS. Antidiabetic and toxicological evaluations of naringeninin normoglycaemic and NIDDM rat models and its implications on extra-pancreatic glucose regulation. Diabetes Obes Metab 2008;10:1097-104.

Veerapur VP, Prabhakar KR, Thippeswamy BS. Antidiabetic effect of Dodonaea viscosa (L). Lacq. aerial parts in high fructose-fed insulin resistant rats: A mechanism based study. Indian J Exp Biol 2010;48:800-10.

Shahidi F, Naczk M. Cereals, legumes and nuts. In: Phenolics in Food and Nutraceuticals. Boca Raton: CRC Press; 2004. p. 17-166.

Andreasen MF, Landbo AK, Christensen LP, Hansen A, Meyer AS. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates and ferulic acid dehydrodimers on human low-density lipoproteins. J Agric Food Chem 2001;49:4090-6.

Kikuzaki H, Hisamoto M, Hirose K, Akiyama K, Taniguchi H. Antioxidant properties of ferulic acid and its related compounds. J Agric Food Chem 2002;50:2161-8.

Yun KJ, Koh DJ, Kim SH, Park SJ, Ryu JH, Kim DG, et al. Antiinflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase 2, and proinflammatory cytokine expressions via nuclear factor-kB inactivation. J Agric Food Chem 2008;56:10265-72.

Yoon BH, Jung JW, Lee JJ, Cho YW, Jang CG, Jin C, et al. Anxiolytic-like effects of sinapic acid in mice. Life Sci 2007;81:234-40.

Zou Y, Kim AR, Kim JE, Choi JS, Chung HY. Peroxynitrite scavenging activity of sinapic acid (3, 5-dimethoxy- 4-hydroxycinnamic acid) isolated from Brassica juncea. J Agric Food Chem 2002;50:5884-90.

Kim DH, Yoon BH, Jung WY, Kim JM, Park SJ, Park DH, et al. Sinapic acid attenuates kainic acid-induced hippocampalneuronal damage in mice. Neuropharmacology 2010;1:1-11.

Kanchana G, Shyni WJ, Rajadurai M, Periasamy R. Evaluation of antihyperglycemic effect of sinapic acid in normal and streptozotocin-induced diabetes in albino rats, Global J Pharmacol 2011;5:33-9.

Bountagkidou OG, Ordoudi SA, Tsimidou MZ. Structure-antioxidant activity relationship study of natural hydroxybenzaldehydes using in vitro assays. Food Res Int 2010;43(8):2014-9.

Trnková L, Boušová I, Ryšánková L, Vrabcová P, Dršata J. Antioxidants and environmental stress: Spectroscopic study on stability of natural compounds and their interaction with a molecule of protein in an in vitro model. Proc Ecopole 2009;3(1):27-34.

Trnková L, Boušová I, Kubıcek V, Dršata J. Binding of naturally occurring hydroxycinnamic acids to bovine serum albumin. Nat Sci 2010;2:563-70.

Kern SM, Bennett RN, Mellon FA, Kroon PA, Garcia-Conesa MT. Absorption of hydroxycinnamates in humans after high-bran cereal consumption. J Agric Food Chem 2003;51(20):6050-5.

Ader P, Grenacher B, Langguth P, Scharrer E, Wolffram S. Cinnamate uptake by rat small intestine: Transport kinetics and transepithelial transfer. Exp Physiol 1996;81(6):943-55.

Zhang K, Zuo Y. GC-MS determination of flavonoids and phenolic and benzoic acids in human plasma after consumption of cranberry juice. J Agric Food Chem 2004;52(2):222-7.

Griffiths LA. Metabolism of sinapic acid and related compoundsin the rat. Biochem J 1969;113(4):603-9.

Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for Type 2 diabetes and pharmacological screening. Pharmacol Res 2005;52:313-20.

Brand-Williams W, Cuvelier ME, Berset C. Use of a free-radical method to evaluate antioxidant activity. Food Sci Technol Leb 1995;28:25-30.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999;26:1231-7.

Fontana M, Mosca L, Rosei MA. Interaction of enkephalines with oxyradicals. Biochem Pharmacol 2001;61:1253-7.

Marcocci L, Maguire JJ, Droylefaix MT, Packer L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun 1994;201:748-55.

Yagi K. Simple fluorimetric assay for lipid peroxides in blood plasma.Biochem Med 1976;15(2):212-5.

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95(2):351-8.

Jiang ZY, Hunt JV, Wolff SD. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem 1992;202:384-9.

Misra HP, Fridovich I. The role of superoxide anion in the auto oxidation of epinephrine and a simple assay of superoxide dismutase. J Biol Chem 1972;24 (10):3170-5.

Takahara S, Hamilton BH, Nell JV, Kobra TY, Ogura Y, Nishimura ET. Hypocatalasemia, a new genetic carrier state. J Clin Invest 1960;39:610-9.

Rotruck JT, Pope AL, Gasther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium biochemical role as a component of glutathione peroxidase. Science 1973;179(4073):588-90.

Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 1974;249(22):7130-9.

Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 1975;250(14):5475-80.

Omaye ST, Turnbull JD, Sauberlich HE. Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. Methods Enzymol 1979;62:3-11.

Desai ID. Vitamin E analysis methods for animal tissues. Methods Enzymol 1984;105:138-47.

Ravin HA. Improved colorimetric assay of ceruloplasmin. J Lab Clin Med 1961;58:161-8.

Sedlak J, Lindsay RH. Estimation of total, protein bound and non-protein sulfhydryl groups in tissue with Ellmans reagent. Anal Biochem 1968;25(1):293-305.

Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 2003;78:517-20.

Kang HS, Kim KR, Jun EM, Park SH, Lee TS, Suh JW, et al. Cyathuscavins A, B, and C, new free radical scavengers with DNA protection activity from the Basidiomycete Cyathusstercoreus. Bioorg Med Chem Lett 2008;18:4047-50.

Lü JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J Cell Mol Med 2010;14:840-60.

Huy LA, He H, Huy CP. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008;4(2):89-96.

Shibuki K, Okada D. Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 1991;349:326-8.

Bredt DS, Snyder SH. Nitric oxide a physiologic messenger molecule. Annu Rev Biochem 1994;63:175-95.

Moncada S, Palmer RM, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109-42.

Nenadis N, Tsimidou M. Observations on the estimation of scavenging activity of phenolic compounds using rapid 1,1-diphenyl-2- picrylhydrazyl (DPPHË™) tests. J Am Oil Chem Soc 2002;79:1191-5.

Hotta H, Nagano S, Ueda M, Tsujino Y, Koyama J, Osakai T. Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemical reactions following their oxidation. Biochim Biophys Acta 2002;1572:123-32.

Jalaludeen AM, Pari L. Studies on the antioxidant and free radical-scavenging effect of sinapic acid: An in vivo and in vitro model. J Pharm Sci Res 2001:3(9);1447-55.

Masek A, Chrzescijanska E, Latos M, Zaborski M. Antioxidant potential of hydroxycinnamic acids in advanced oxidation processes. Int J Electrochem Sci 2016;11:8848-60.

Ellingsen I, Hjerkinn E, Seljeflot I, Arnesen H, Tonstad S. Consumption of fruit and berries is inversely associated with carotid atherosclerosis in elderly men. Brit J Nutr 2008;99:674-81.

Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009;2(5):270-8.

Martin KR, Appel CL. Polyphenols as dietary supplements: A double-edged sword. Nutr Diet Suppl 2010;2:1-12.

Sies H. Oxidative stress: Oxidants and antioxidants. Exp Physiol 1997;82:291-5.

Magnenat JL, Garganoam M, Cao J. The nature of antioxidant defense mechanisms: A lesson from transgenic studies. Environ Health Perspect 1998;106:1219-28.

Zelko I, Mariani T, Folz R. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 2002;33:337-49.

Johnson F, Giulivi C. Superoxide dismutases and their impact upon human health. Mol Aspects Med 2005;26:340-52.

Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci 2004;61:192-208.

Gaetani G, Ferraris A, Rolfo M, Mangerini R, Arena S, Kirkman H. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 1996;87:1595-9.

Meister A, Anderson M. Glutathione. Annu Rev Biochem 1983;52:711-60.

Brigelius-Flohe R. Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 1999;27:951-65.

Hayes J, Flanagan J, Jowsey I. Glutathione transferases. Annu Rev Pharmacol Toxicol 2005;45:51-88.

Smirnoff N. L-ascorbic acid biosynthesis. Vitam Horm 2001;61:241-66.

Padayatty S, Katz A, Wang Y, Eck P, Kwon O, Lee J, et al. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. J Am Coll Nutr 2003;22:18-35.

Herrera E, Barbas C. Vitamin E: Action, metabolism and perspectives. J Physiol Biochem 2001;57:43-56.

Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med 2007;43:4-15.

Wang X, Quinn P. Vitamin E and its function in membranes. Prog Lipid Res 1999;38:309-36.



How to Cite

R, N., and S. S. “ANTIOXIDANT PROPERTIES OF SINAPIC ACID: IN VITRO AND IN VIVO APPROACH”. Asian Journal of Pharmaceutical and Clinical Research, vol. 10, no. 6, June 2017, pp. 255-62, doi:10.22159/ajpcr.2017.v10i6.18263.



Original Article(s)