DEVELOPMENT OF AZITHROMYCIN LOADED LEMONGRASS OIL BASED MICROEMULSION AND DETERMINATION OF ANTIBACTERIAL POTENTIAL

Authors

  • Andrew Ebenazer Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore- 632 014. Tamil Nadu. India.
  • Jonathan Sampath Franklyne Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore- 632 014. Tamil Nadu. India.
  • Amitava Mukherjee Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore- 632 014. Tamil Nadu. India.
  • N. Chandrasekaran Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore- 632 014. Tamil Nadu. India.

DOI:

https://doi.org/10.22159/ijap.2018v10i6.25417

Keywords:

Drug delivery system, lemongrass oil, Microemulsion, Drug release, Antibacterial activity, Toxicity testing

Abstract

Objective: Azithromycin (AZM), an azalide drug is used to treat bacterial infections. It is poorly water-soluble, with low human bioavailability due to partial absorption. This can be improved using a microemulsion drug delivery system using essential oil.

Methods: Microemulsion system was prepared with AZM solubilized lemongrass oil (Cymbopogon citratus), Tween 20 and water containing 1% (v/v) 10 mmol sodium hydroxide. In vitro drug release was determined using a 14KDa semipermeable dialysis membrane. The kinetics of bacterial killing was done at MIC concentrations, and viable counts were determined hourly for 24 h. Bacterial cell viability was determined by differential staining with acridine orange and ethidium bromide. In vitro toxicity was determined by the MTT assay, while in vivo toxicity was determined in male Wistar rats.

Results: The optimized formulation (5:20:75 %) was thermodynamically stable with drug solubility of 366.90 mg/ml and a droplet diameter of 12.4±3.9 nm, which do not show in vivo or in vitro toxicity. In vitro drug release study in simulated body fluids revealed a controlled drug release from microemulsion-based formulation. The MIC was 1μg/ml and 2μg/ml against Staphylococcus aureus and Escherichia coli respectively. In vitro kill kinetics showed>2 log10 killing by 8 h. Bacterial cell viability assay and scanning electron microscopy analysis further confirmed substantial morphological changes due to alteration in the cell membrane.

Conclusion: The reduced droplet size and the inherent antibacterial property of lemongrass oil enhanced the efficacy of the AZM loaded ME system in comparison with the bulk drug, against the bacterial pathogens.

Downloads

Download data is not yet available.

References

Sareen S, Mathew G, Joseph L. Improvement insolubility of poor water-soluble drugs by solid dispersion. Int J Pharma Investig 2012;2:12-7.

Kumar A, Sharma S, Kamble R. Self-emulsifying drug delivery system (SEDDS): future aspects. Int J Pharm Pharm Sci 2010;2:7-13.

T Lalwani J, Thakkar VT, Patel HV. Enhancement of solubility and oral bioavailability of ezetimibe by a novel solid self-nano emulsifying drug delivery system (SNEDDS). Int J Pharm Pharm Sci 2013;5:513-22.

Pujara ND. Self-emulsifying drug delivery system: a novel approach. Int J Curr Pharm Res 2012;4:18-23.

Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. ‎Adv Drug Delivery Rev 2002;54:S77-98.

Dixit GR, Mathur V. Microemulsions: a platform for improvement of solubility and dissolution of poorly soluble drugs. Asian J Pharm Clin Res 2015;8:7-17.

Onawunmi GO. Evaluation of the antimicrobial activity of citral. Lett Appl Microbiol 1989;9:105-8.

Moore Neibel K, Gerber C, Patel J, Friedman M, Ravishankar S. Antimicrobial activity of lemongrass oil against Salmonella enterica on organic leafy greens. J Appl Microbiol 2012;112: 485-92.

Silva CdBd, Guterres SS, Weisheimer V, Schapoval EE. Anti-fungal activity of the lemongrass oil and citral against candida spp. Braz J Infect Dis 2008;12:63-6.

Tyagi R, Sharma G, Jasuja ND, Menghani E. Indian medicinal plants as an effective antimicrobial agent. J Crit Rev 2016;3:69-71.

Mazzei T, Mini E, Novelli A, Periti P. Chemistry and mode of action of macrolides. J Antimicrob Chemother 1993;31:1-9.

Champney WS, Burdine R. Azithromycin and clarithromycin inhibition of 50S ribosomal subunit formation in Staphylococcus aureus cells. Curr Microbiol 1998;36:119-23.

Luke DR, Foulds G. Disposition of oral azithromycin in humans. Clin Pharmacol Ther 1997;61:641-8.

Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Design and development of oral oil in water ramipril nanoemulsion formulation: in vitro and in vivo assessment. J Biomed Nanotechnol 2007;3:28-44.

Nirmala MJ, Mukherjee A, Chandrasekaran N. Improved efficacy of fluconazole against candidiasis using bioâ€based microemulsion technique. ‎Biotechnol Appl Biochem 2013;60:417-29.

Prajapati ST, Joshi HA, Patel CN. Preparation and characterization of self-micro emulsifying drug delivery system of olmesartan medoxomil for bioavailability improvement. J Pharm 2012. http://dx.doi.org/10.1155/2013/728425

Syed HK, Peh KK. Identification of phases of various oil, surfactant/co-surfactants and water system by ternary phase diagram. Acta Pol Pharm 2014;71:301-9.

Nasr A, Gardouh A, Ghorab M. Effect of oils, surfactants and cosurfactants on phase behavior and physicochemical properties of self-nanoemulsifying drug delivery system (SNEDDS) for Irbesartan and Olmesartan. Int J Appl Pharm 2016;8:1-9.

Liu Z, Wang X, Yao K, Du G, Lu Q, Ding Z, et al. Synthesis of magnetite nanoparticles in W/O microemulsion. J Mater Sci 2004;39:2633-6.

Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm 2007; 66:227-43.

Nirmala MJ, Shivashankar M, Ernest V, Mukherjee A, Chandrasekaran N. Physico-chemical characterization of ramipril using clove oil based microemulsion drug delivery system. Nanomed Nanobiol 2014;1:43-50.

Marques MR, Loebenberg R, Almukainzi M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol 2011;18:15-28.

Solanki SS, Sarkar B, Dhanwani RK. Microemulsion drug delivery system: for bioavailability enhancement of ampelopsin. ISRN Pharm 2012. Doi:10.5402/2012/108164.

Elshikh M, Ahmed S, Funston S, Dunlop P, McGaw M, Marchant R, et al. Resazurin-based 96-well plate microdilution method for the determination of the minimum inhibitory concentration of biosurfactants. Biotechnol Lett 2016;38:1015-9.

Barry AL, Craig WA, Nadler H, Reller LB, Sanders CC, Swenson JM. Methods for determining bactericidal activity of antimicrobial agents: approved guideline. NCCLS document M26-A; 1999. p. 19.

Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007;42:321-4.

Nogueira F, Diez A, Radfar A, Perez-Benavente S, do Rosario VE, Puyet A, et al. Early transcriptional response to chloroquine of the plasmodium falciparum antioxidant defence in sensitive and resistant clones. Acta Trop 2010;114:109-15.

Sugumar S, Ghosh V, Nirmala MJ, Mukherjee A, Chandrasekaran N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: antibacterial activity against Staphylococcus aureus and wound healing activity in wistar rats. Ultrason Sonochem 2014; 21:1044-9.

Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest 1968;21:77-89.

Naravaneni R, Jamil K. In vitro cytogenetic studies of cypermethrin on human lymphocytes. Indian J Exp Biol 2006;44:233-9.

Spencer K. Analytical reviews in clinical biochemistry: the estimation of creatinine. ‎Ann Clin Biochem 1986;23:1-25.

Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery-an overview. Acta Pharm Sin B 2011;1:208-19.

Patel V, Kukadiya H, Mashru R, Surti N, Mandal S. Development of microemulsion for solubility enhancement of clopidogrel. Iran J Pharm Res 2010;9:327-34.

Srinivas C, Sagar S. Enhancing the bioavailability of simvastatin using microemulsion drug delivery system. Asian J Pharm Clin Res 2012;5:134-9.

Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Delivery Rev 2012;64:175-93.

Thakkar H, Nangesh J, Parmar M, Patel D. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-micro emulsifying drug delivery system. J Pharm Bioallied Sci 2011;3:442-8.

Li X, Anton N, Ta TMC, Zhao M, Messaddeq N, Vandamme TF. Microencapsulation of nanoemulsions: novel trojan particles for bioactive lipid molecule delivery. Int J Nanomed 2011;6:1313-25.

Hunter RJ. Zeta potential in colloid science: principles and applications. 1st ed.: Academic Press; 2013.

Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res 2013;12:265-73.

Woo BH, Kostanski JW, Gebrekidan S, Dani BA, Thanoo B, DeLuca PP. Preparation, characterization and in vivo evaluation of 120-day poly (D, L-lactide) leuprolide microspheres. J Controlled Release 2001;75:307-15.

Mandal S, Mandal SS. Research paper microemulsion drug delivery system: a platform for improving the dissolution rate of the poorly water-soluble drug. Int J Pharm Sci Nanotech 2011;3:1214-9.

Norcia L, Silvia A, Hayashi S. Studies on the time-kill kinetics of different classes of antibiotics against veterinary pathogenic bacteria including Pasteurella, Actinobacillm and Escherichia coli. J Antibiot 1999;52:52-60.

Baker Jr JR, Hamouda T, Shih A, Myc A. Non-toxic antimicrobial compositions and methods of use, U. S. Patent No. 6,559,189; 2003.

Sugumar S, Mukherjee A, Chandrasekaran N. Eucalyptus oil nanoemulsion-impregnated chitosan film: antibacterial effects against a clinical pathogen, Staphylococcus aureus in vitro. Int J Nanomed 2015;10:67.

Tyagi AK, Malik A. Morphostructural damage in food-spoiling bacteria due to the lemongrass oil and its vapour: SEM, TEM, and AFM investigations. Evid Based Complement Alternat Med 2012. Doi:10.1155/2012/692625.

Korenblum E, Regina de Vasconcelos Goulart F, de Almeida Rodrigues I, Abreu F, Lins U, Alves PB, et al. Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral. AMB Express 2013;3:44.

Braun S, Gaza N, Werdehausen R, Hermanns H, Bauer I, Durieux ME, et al. Ketamine induces apoptosis via the mitochondrial pathway in human lymphocytes and neuronal cells. Br J Anaesth 2010;105:347-54.

Published

07-11-2018

How to Cite

Ebenazer, A., Franklyne, J. S., Mukherjee, A., & Chandrasekaran, N. (2018). DEVELOPMENT OF AZITHROMYCIN LOADED LEMONGRASS OIL BASED MICROEMULSION AND DETERMINATION OF ANTIBACTERIAL POTENTIAL. International Journal of Applied Pharmaceutics, 10(6), 72–81. https://doi.org/10.22159/ijap.2018v10i6.25417

Issue

Section

Original Article(s)

Most read articles by the same author(s)