• P. Anitha Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, Kadapa, Andhra Pradesh 516126
  • J. Bhargavi Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, Kadapa, Andhra Pradesh 516126
  • G. Sravani Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, Kadapa, Andhra Pradesh 516126
  • B. Aruna Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, Kadapa, Andhra Pradesh 516126
  • Ramkanth S. Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, Kadapa, Andhra Pradesh 516126



Nil, Dendrimer, Cancer therapy, Nanocarriers, Drug delivery, Diagnostic applications


With the recent advances of nanotechnology, dendrimers are emerging as a highly attractive class of drug delivery vectors for cancer therapy. Dendrimers are multifunctional smart Nanocarriers to deliver one or more therapeutic agent safely and selectively to cancer cells. The high level of control over the synthesis of dendritic architecture makes dendrimers a nearly perfect (spherical) nanocarrier for site-specific drug delivery. The presence of functional groups in the dendrimers exterior also permits the addition of other moieties that can actively target certain diseases which are now widely used as tumor targeting strategies. Drug encapsulation, solubilization and passive targeting also equally contribute to the therapeutic use of dendrimers. Dendrimers are ideal carrier vehicles on cytotoxicity, blood plasma retention time, biodistribution and tumor uptake. In this review we highlight the advantages of dendrimers over conventional chemotherapy, toxicity and its management, following anti-cancer drugs delivered by using dendrimers and recent advances in drug delivery by various types of dendrimers as well as its diagnostic applications.


Download data is not yet available.


Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide; sources, methods and major patterns in globocan. Int J Cancer 2015;136:359-86.

Prashant Kesharwani, Arun K Iyer. Recent advances in dendrimer-based Nano vectors for tumor targeted drug and gene delivery. Drug Discovery Today 2015;20:536-47.

Srinivasa Gopalan, Sampath kumar, Kevin J Yarema. Dendrimers in cancer treatment and diagnosis. Nanotechnologies for the Life sciences. Nanomaterials for Cancer Diagnosis. WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim; 2007. p. 1-33.

Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as nano carriers for nucleic acid and drug delivery in cancer therapy. Molecules 2017;22:23.

Liu M, Frechet JMJ. Designing dendrimers for drug delivery. Pharm Sci Technol Today 1999;2:393-401.

Sven Son S, Tomalia DA. Dendrimers in bio medical applications-Reflections on the field. Adv Drug Delivery Rev 2012;64:102-15.

Lee CC, Mackay JA, Frechet JMJ, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol 2005;23:1517-26.

Ashok Kumar Sharma, Avinash Gothwal, Prashant Kesharwani, Hashem Alsaab, Arun K Iyer. Dendrimers nano-architectures for cancer diagnosis and anti-cancer drug delivery. Drug Discovery Today 2016;22:314-26.

Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK. Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci 2009;38:185-96.

Landge DA, Shyale SS, Kadam SD, Shah DV, Katareys, Pawar JB. Dendrimer: an acceptable innovative approach in novel drug delivery system. Pharmacophore An Int J 2014;5:24-34.

Patidar A, Thakur DS. Dendrimer: a potential carrier for drug delivery. Int J Pharm Sci Nanotech 2011;4:1383-9.

Sadhana R Shahi, Mitali S Kulkarni, Gopal S Karva, Prabhanjan S Giram, Ruchika R Gugulkar. Dendrimers. Int J Pharm Sci Res 2015;33:187-98.

Duncan R, Izzo L. Dendrimer bio compatibility and toxicity. Adv Drug Delivery Rev 2005;57:2215-37.

Silva JRNP, Menacho FP, Chorilli M. Dendrimers as potential platform in nanotechnology-based drug delivery systems. IOSR J Pharm 2012;2:23-30.

Jain K, Kesharwani P, Gupta U, Jain NK. Dendrimer toxicity: let’s met the challenge. Int J Pharm 2010;394:122-42.

Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 2014;6:139-50.

Crampton, Hannah L, Manek Eric E. Dendrimers the drug delivery vehicles: non-covalent interactions of bioactive compounds with dendrimers. Polymer Int 2007;56:489-96.

Szymanski, Pawel, Markowicz, Magdalena, Mikiciuk-Olasik, Elz Bieta. Nanotechnology in pharmaceutical and biomedical applications. Dendrimers World Scientific Publishing Company 2011;6:509-39.

Kim, Tae-il. Comparison between arginine conjugated PAMAM dendrimers with structural diversity for gene delivery systems. J Controlled Release 2009;136:132-9.

Kesharwani P, Iyer AK. Recent advances in dendrimer-based Nano vectors for tumor-targeted drug and gene delivery. Drug Discovery Today 2015;20:536-47.

Kaminskas LM. A comparison of changes to doxorubicin pharmaco kinetics, anti-tumor activity and toxicity mediated by PEGylated dendrimer and PEGylated liposome drug delivery systems. Nanomed Nanotechnol Biol Med 2012;8:103-11.

Ly TU, Tran NQ, Hoang. PE gylateddendrimerand its effect in fluorouracil loading and release for enhancing anti-tumor activity. J Biomed Nanotechnol 2013;9:213-20.

Bhadra, D, Bhadra S, Jain NK. A PEGylated dendritic nano particulate carrier of fluorouracil. Int J Pharm 2003;257:111-24.

Jevprasesphant R, Penny J, Jalal, Attwood D, Mckeown NB, Manuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 2003;252:263-6.

Luo J, Borgens R, Shi R. Poly ethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury. J Neurochem 2002;83:471-80.

Zhu S, Hong M, Zhang L, Tang G, Jiang Y, Pei Y. PEGylated PAMAM dendrimer-doxorubicin conjugates: Invitro evaluation and invivo tumor accumulation. Pharm Res 2010;27:161-74.

Jesse B Wolinsky, Mark W, Grin Staff. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Delivery 2008;60:1037-55.

MT Morgan, MA Carnahan, Chad E Immoos, Anthony A Ribeiro, Stella Finkelstein. Dendritic molecular capsules for hydrophobic compounds. J Am Chem Soc 2003;125:15485-9.

MF Neerman, Hui Ting Chen, Alan R Parrish, Eric E Simanek. Reduction of drug toxicity using dendrimers based on melamine. Mol Pharm 2004;1:390-3.

Jayant J Khandare, SreejaJayant, Ajay Singh, Pooja Chandna, Yang Wang, Nicholi Vorsa, Tamara Minko. Dendrimer versus linear conjugate: influence of polymeric architecture on the delivery and anti-cancer effect of paclitaxel. Bio Conjug Chem 2006;17:1464-72.

He H, Li Y, Jia XR, Du J, Ying X, Lu WL, et al. PEGylated poly (amido amine) dendrimer-based dual-targeting carriers for treating brain tumors. Bio Materials 2011;32:478-87.

Kesharwani P, Jain K, Jain NK. Dendrimer as nano carrier for drug delivery. Prog Polym Sci 2014;39:268-307.

Jain NK, Tare MS, Mishra, Tripathi PK. The development characterization and invivoanti-ovarian cancer activity of poly (propylene imine)-antibody conjugates containing encapsulated paclitaxel. Nanomed Nanotechnol Biol Med 2015;11:207-18.

Medina SH, Chevliakov MV, Tiruchinapally G, Durmaz YY, Kuruvilla SP, Elsayed ME. Enzyme-activated nano conjugates for tunable release of doxorubicin in hepatic cancer cells. Bio Materials 2013;34:4655-66.

Kaminskas LM, Kelly BD, McLeod VM, Sberna G, Owen DJ, Boyd BJ, et al. Characterization and tumor targeting of PEGylated polylysine dendrimers bearing doxorubicin via a pH liable linker. J Controlled Release 2011;152:241-8.

Al-Jamal KT, Al-Jamal, Wang JTW, Rubio N, Buddle J, Gathercole D Zloh. Cationic poly l-lysine dendrimer complexes doxorubicin and delays tumor growth complexes doxorubicin and delays tumor growth in vitro and in vivo. ACS Nano 2013;7:1905-17.

Takuro Niidome, Hisayo Yamauchi, Kayo Takahashi, Kenshiro Naoyama, Kazuto Watanabe, Takeshi Mori, et al. Hydrophobic cavity formed by oligopeptide for doxorubicin delivery based on dendritic poly (L-lysine). J Biomater Sci Polym Ed 2014;25:1362-73.

Sylwia Michlewska, Maksim Ionov, Marta Maroto Diaz, Aleksandra Szwed, AliakseiIhnatsyeu-Kachane, Svetlana Loznikov, et al. Ruthenium dendrimers as carriers for anticancer si RNA. J Inorg Biochem 2018;181:18-27.

Kelly E Burnsa, James B Delehantya. Cellular delivery of doxorubicin mediated by disulfide reduction of a peptide-dendrimerbioconjugate. Int J Pharm 2018;545:64–73.

Jun Cao, Chenhong Wang, Leijia Guo, Zhiyong Xiao, Keliang Liu, Husheng Yan. Co-administration of a charge-conversional dendrimer enhances antitumor efficacy of conventional chemotherapy. Eur J Pharm Biopharm 2018;127:371-7.

Kuruvilla SP, Tiruchinapally G, Kaushal N, ElSayed MEH. Effect of N-acetylgalactosamine ligand valency on targeting dendrimers to hepatic cancer cells. Int J Pharm 2018;545:27-36.

Amreddy N, Babu A, Panneerselvam J, Srivastava A, Muralidharan R, Chen A, et al. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomedicine 2018;14:373-84.

Chuda Chittasupho, Songyot Anuchapreed, Narong Sarisuta. CXCR4 targeted dendrimer for anti-cancer drug delivery and breastcancer cell migration inhibition. Eur J Pharm Biopharm 2017;119:310–21.

Nigam S, Bahadur D. Dendrimer-conjugated iron oxide nanoparticles as stimuli-responsive drug carriers for thermally-activated chemotherapy of cancer. Colloids Surf B 2017;155:182-92.

Ozturk K, Esendagli G, Gurbuz MU, Tulu M, Calis S. Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers. Int J Pharm 2017;517:157-67.

Bodewein L, Schmelter F, Di Fiore S, Hollert H, Fischer R, Fenske M. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines. Toxicol Appl Pharmacol 2016;305:83-92.

Prashant Kesharwani, Rakesh K Tekade, Narendra K Jain. Generation dependent cancer targeting potential of poly (propyleneimine) dendrimer. Biomaterials 2014;35:5539-48.

Wenjun Yang, Yiyun Cheng, Tongwen Xu, Xueyuan Wang, Long-ping Wen. Targeting cancer cells with biotinedendrimer conjugates. Eur J Med Chem 2009;44:862-8.

Wenjun Yang, Yiyun Cheng, Tongwen Xu, Xueyuan Wang, Long-Ping Wen. Targeting cancer cells with biotinedendrimer conjugates. Eur J Med Chem 2009;44:862-8.

S Langereis, QG Delussanet, MH Van Genderen, EW Meijer, RG Beets-Tan, AW Griffioen, et al. Evaluation of Gd (lll) DTPA-terminated poly (propylene Imine) dendrimers as contrast agents for MR imaging. NMR Biomed 2006;19:133-41.

Y Fu, DE Nitecki, GH Simon, K Berejnoi, HJ Raat Sehen, BM Yeh. Dendritic Iodinated contrast agents with PEG-cores for CT imaging: synthesis and preliminary characterization. Bio Conjug Chem 2006;17:1043-56.

James R, Baker Jr. Dendrimer-based nanoparticles for cancer therapy. Hematol Am Soc Hematol Educ Program 2009;708-19. DOI:10.1182/asheducation-2009.1.708.

G Wu, RF Barth, W Yang, RJ Lee, W Tjarks, MV Backer, et al. Boron containing Macromolecules and Nano vehicles as delivery agents for neutron capture therapy. Anti-Cancer Agents Med Chem 2006;6:167-84.



How to Cite

Anitha, P., Bhargavi, J., Sravani, G., Aruna, B., & S., R. (2018). RECENT PROGRESS OF DENDRIMERS IN DRUG DELIVERY FOR CANCER THERAPY. International Journal of Applied Pharmaceutics, 10(5), 34–42.



Review Article(s)