IN LABORATORY GENERATION AND MATURATION OF HUMAN MONOCYTE-DERIVED DENDRITIC CELLS FOR CANCER IMMUNOTHERAPY

Authors

  • KANCHAN K. MISHRA Surat Raktadan Kendra and Research Centre, (Regional Blood Transfusion and Research Centre), (NABH Accredited and SIROs Recognition from DSIR, 1st Floor, Khatodara Health Centre, Khatodara 395002, Surat (Gujarat), India
  • SUMIT BHARADVA Surat Raktadan Kendra and Research Centre, (Regional Blood Transfusion and Research Centre), (NABH Accredited and SIROs Recognition from DSIR, 1st Floor, Khatodara Health Centre, Khatodara 395002, Surat (Gujarat), India
  • MEGHNAD G. JOSHI Department of Stem Cells and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society Institution Deemed to be University, Kolhapur, India
  • ARVIND GULBAKE Department of Stem Cells and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society Institution Deemed to be University, Kolhapur, India

DOI:

https://doi.org/10.22159/ijap.2020.v12s4.40104

Keywords:

Dendritic Cells, Monocyte-derived Dendritic Cells, Immunotherapy

Abstract

Dendritic cells (DCs) play a critical role in the regulation of adaptive immune responses, furthermore they act as a bridge between the innate and the adaptive immune systems they have been ideal candidates for cell-based immunotherapy of cancers and infections in humans. The first reported trial using DCs in 1995, since they have been used in trials all over the world for several of indications, including cancer and human immunodeficiency virus infection. Generally, for in vitro experiments or for DCs vaccination monocyte-derived dendritic cells (moDCs) were generated from purified monocytes that isolated from peripheral blood by density gradient centrifugation. A variety of methods can be used for enrichment of monocytes for generation of clinical-grade DCs. Herein we summarized up to date understanding of systems and inputs used in procedures to differentiate DCs from blood monocytes in vitro.

Downloads

Download data is not yet available.

References

1. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. Clin Orthop Relat Res 1991;262:3-11.
2. Yuanyuan Zhang, Zemin Zhang. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol 2020;17:807-21.
3. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973;137:1142–62.
4. Constantino J, Gomes C, Falcao A, Cruz MT, Neves BM. Antitumor dendritic cell–based vaccines: lessons from 20 y of clinical trials and future perspectives. Transl Res 2016;16:74–95.
5. Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. Int Rev Cell Mol Biol 2019;348:1-68.
6. Gallo PM, Gallucci S. The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front Immunol 2013;4:138.
7. Pearce EJ, Everts B. Dendritic cell metabolism. Nat Rev Immunol 2015;15:18-29.
8. Hussein Sultan, Juan Wu, Takumi Kumai, Andres M Salazar, Esteban Celis. Role of MDA5 and interferon-I in dendritic cells for T cell expansion by anti-tumor peptide vaccines in mice. Cancer Immunol Immunother 2018;67:1091-103.
9. Garg AD, Vara Perez M, Schaaf M, Agostinis P, Zitvogel L, Kroemer G, et al. Trial watch: dendritic cell-based anticancer immunotherapy. Oncoimmunology 2017;6:e1328341.
10. Robert O Dillman, Andrew N Cornforth, Gabriel I Nistor, Edward F McClay, Thomas T Amatruda, et al. Randomized phase II trial of autologous dendritic cell vaccines versus autologous tumor cell vaccines in metastatic melanoma: 5-year follow up and additional analyses. J Immunother Cancer 2018;6:19.
11. Stefanie K Wculek, Francisco J Cueto, Adriana M Mujal, Ignacio Melero, Matthew F Krummel, David Sancho. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 2020;20:7-24.
12. Lee AW, Truong T, Bickham K, Fonteneau JF, Larsson M, Da Silva I, et al. A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy. Vaccine 2002;20:8–22.
13. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010;363:411–22.
14. Kumar C, Kohli S, Chiliveru S, Bapsy PP, Jain M, Suresh Attili VS, et al. A retrospective analysis comparing APCEDEN(R) dendritic cell immunotherapy with best supportive care in refractory cancer. Immunotherapy 2017;9:889–97.
15. Beatris Mastelic Gavillet, Klara Balint, Caroline Boudousquie, Philippe O Gannon, Lana E Kandalaft. Personalized dendritic cell vaccines-recent breakthroughs and encouraging clinical results. Front Immunol 2019;10:766.
16. Lisa B Boyette, Camila Macedo, Kevin Hadi, Beth D Elinoff, John T Walters, Bala Ramaswami, et al. Phenotype, function, and differentiation potential of human monocyte subsets. PLoS One 2017;12:e0176460.
17. Strasser EF, Eckstein. Optimization of leukocyte collection and monocyte isolation for dendritic cell culture. Transfus Med Rev 2010;24:130-9.
18. Smita K Nair, Timothy Driscoll, David Boczkowski, Robert Schmittling, Renee Reynolds, Laura A Johnson, et al. Ex vivo generation of dendritic cells from cryopreserved, post-induction chemotherapy, mobilized leukapheresis from pediatric patients with medulloblastoma. J Neurooncol 2015;125:65-74.
19. Giovana Cechim, Jose AB Chies. In vitro generation of human monocyte-derived dendritic cells methodological aspects in a comprehensive review. An Acad Bras Cienc 2019;91:4.
20. Beatris Mastelic Gavillet, Klara Balint, Caroline Boudousquie, Philippe O Gannon, Lana E Kandalaft. Personalized dendritic cell vaccine-recent breakthroughs and encouraging clinical results. Fron Immunol 2019;10:766.
21. Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Scand J Clin Lab Invest 1968;21:77–89.
22. Lara T Meitala, Alexander S Cowarda, Mark T Windsor, Tom G Bailey, Anna Kuballa, Fraser D Russella. A simple and effective method for the isolation and culture of human monocytes from small volumes of peripheral blood. J Immunol Methods 2019;472:75-8.
23. Meyer TP, Zehnter I, Hofmann B, Illert We. Buffy coats (FBC): a source of peripheral blood leukocytes recovered from leukocytedepletion filters. J Immunol Methods 2005;20:150-66.
24. Ito Y, Shinomiya K. A new continuous-flow cell separation method based on cell density: principle, apparatus, and preliminary application to separation of human buffy coat. J Clin Apher 2001;16:186-91.
25. Lehner M, Holter W. Endotoxin-free purification of monocytes for dendritic cell generation via discontinuous density gradient centrifugation based on diluted ficoll-paque plus. Int Arch Allergy Immunol 2002;128:73-6.
26. Wilfried Posch, Cornelia Lass Florl, Doris Wilflingseder. Generation of human monocyte-derived dendritic cells from whole blood. J Vis Exp 2016;118:54968.
27. Delirezh N, Shojaeefar E, Parvinp, Asadi B. Comparison the effects of two monocyte isolation methods, plastic adherence and magnetic activated cell sorting methods, on phagocytic activity of generated dendritic cells. Cell J 2013;15:218-23.
28. Christophe Macri, Ben Fancke, Kristen J Radford, Meredith O'Keeffe. Monitoring dendritic cell activation and maturation. Methods Mol Biol 2019;1988:403-18.
29. Thaize Quiroga Chometon, Mariana da Silva Siqueira, Julie Carmo Sant Anna, Matheus Rogerio Almeida, Mariana Gandini, Ana Cristina Martins de Almeida Nogueira, et al. A protocol for rapid monocyte isolation and generation of singular human monocyte-derived dendritic cells. PLoS One 2020;15:e0231132.
30. Moore GE, Gerner RE, Franklin HA. Culture of normal human leukocytes. JAMA 1967;199:19-524.
31. Gloria Figueroa, Tiyash Parira, Alejandra Laverde, Gianna Casteleiro, Amal El-Mabhouh, Madhavan Nair, et al. Characterization of human monocyte-derived dendritic cells by imaging flow cytometry: a comparison between two monocyte isolation protocols. J Vis Exp 2016;116:54296.
32. Vastsan RS, Bross PF, LIU K, Theoret M, Puri RK. Regulation of immunotherapeutic products for cancer and FDA’s role in product development and clinical evaluation. J Immunother Cancer 2013;29:1-5.
33. Deluce Kakwata Nkor N, Lamendour L, Chabot V, Heraud A, Ivanovic Z, Halary F, et al. Differentiation of human dendritic cell subsets for immune tolerance induction. Transfus Clin Biol 2018;25:90-5.
34. Tsing Lee Tang Huau, Elodie Segura. Human in vivo-differentiated monocyte-derived dendritic cells. Semin Cell Dev Biol 2019;86:44-9.
35. Obermaier B, Dauer M, Herten J, Eigler A. Development of a new protocol for 2-day generation of mature dendritic cells from human monocytes. Biol Proced Online 2003;5:197-203.
36. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin-4 and down regulated by tumor necrosis factor alpha. J Exp Med 1994;179:1109-18.
37. Suzuki H. Activities of granulocyte-macrophage colony-stimulating factor and interleukin-3 on monocytes. Am J Hematol 2004;75:179-89.
38. Jansen JH, Wientjens GJ, Fibbe WE, Willemze R, Kluin HC. Inhibition of human macrophage colony formation by interleukin-4. J Exp Med 1989;170:577-82.
39. Relloso M, Puig Kroger A, Fello OM, De La Rosa, Corbi AL. DC-SIGN (CD209) expression is IL-4 dependent and is negatively regulated by IFN, TGF-beta, and anti-inflammatory agents. J Immunol 2002;168:2634-43.
40. Sanarico N, Ciaramella A, Sacchi A, Vendetti. Human monocyte-derived dendritic cells differentiated in the presence of IL-2 produce proinflammatory cytokines and prime Th1 immune response. J Leukoc Biol 2006;80:555-62.
41. Takahashi K, Honeyman MC, Harrison. Dendritic cells generated from human blood in granulocyte macrophage-colony stimulating factor and interleukin-7. Hum Immunol 1997;55:103-16.
42. Santini SM, Lapenta C, Logozzi M, Parlato S, Belardelli F. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med 2000;191:1777-88.
43. Mohty M, Vialle Castellano A, Nunes JA, Isnardon D, Olive D, Gaugler B. IFN-alpha skews monocyte differentiation into Toll-like receptor 7-expressing dendritic cells with potent functional activities. J Immunol 2003;171:3385-93.
44. Iwamoto S, Iwai S, Tsujyama K, Kirashashi C, Miyazaki A. TNF-alpha drives human CD14+monocytes to differentiate into CD70+dendritic cells evoking Th1 and Th17 responses. J Immunol 2007;179:1449-57.
45. Patrick Han, Douglas Hanlon, Olga Sobolev, Rabib Chaudhury, Richard L Edelson. Ex vivo dendritic cell generation-a critical comparison of current approaches. Int Rev Cell Mol Biol 2019;349:251-307.
46. Francesca Fallarino, Maria T Pallotta, Davide Matino, Marco Gargaro, Ciriana Orabona, Carmine Vacca, et al. LPS-conditioned dendritic cells confer endotoxin tolerance contingent on tryptophan catabolism. Immunobiology 2015;220:315-21.
47. Marita Chakhtoura, Uma Sriram, Michelle Heayn, Joshua Wonsidler, Christopher Doyle, Joudy-Ann Dinnall. Bisphenol a does not mimic estrogen in the promotion of the in vitro response of murine dendritic cells to toll-like receptor ligands. Mediators Inflamm 2017;2017:2034348.
48. Vicente Suarez I, Brayer J, Villagra A, Cheng F, Sotomayor EM. TLR5 ligation by flagellin converts tolerogenic dendritic cells into activating antigen-presenting cells that preferentially induce T-helper 1 responses. Immunol Lett 2009;125:114-8.
49. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 2010;33:492-503.
50. Hemmi H. A toll-like receptor recognizes bacterial DNA. Nature 2000;408:740-5.
51. Jenny Bulgarelli, Laura Fiammenghi, Serena Cassan, Anna Maria Granato, Massimiliano Petrini, Elena Pancisi, et al. Skewing effect of sulprostone on dendritic cell maturation compared with dinoprostone. Cytotherapy 2018;20:851-60.
52. Nazarkina Zh K, Zajakina A, Laktionov PP. Maturation and antigen loading protocols influence activity of anticancer dendritic cells. Mol Biol Mosk 2018;52:257-69.
53. Brencicova E, Jagger AL, Evans HG, Georgouli M, Laios A, Attard Montalto S, et al. Interleukin-10 and prostaglandin E2 have complementary but distinct suppressive effects on toll-like receptor-mediated dendritic cell activation in ovarian carcinoma. PLoS One 2017;12:e0175712.
54. Trabanelli S, Lecciso M, Salvestrini V, Cavo M, Ocadlikova D, Lemoli RM, et al. PGE2-induced IDO1 inhibits the capacity of fully mature DCs to elicit an in vitro antileukemic immune response. J Immunol Res 2015. DOI:10.1155/2015/253191
55. Jenny Sprooten, Patrizia Agostinis, Abhishek D Garg. Type I interferons and dendritic cells in cancer immunotherapy. Int Rev Cell Mol Biol 2019;348:217-62.
56. Bol KF, Aarntzen EH, Pots JM, Olde Nordkamp MA, van de Rakt MW, Scharenborg NM, et al. Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity. Cancer Immunol Immunother 2016;65:327–39.
57. Motao Zhu, Xilai Ding, Ruifang Zhao, Xuewu Liu, Haifa Shen, Chunmei Cai, et al. Co-delivery of tumor antigen and dual toll-like receptor ligands into dendritic cell by silicon microparticle enables efficient immunotherapy against melanoma. J Controlled Release 2018;272:72-82.
58. Brabants E, Heyns K, Smet S De, Devreker P, Ingels J, Cabooter N De, et al. An accelerated, clinical-grade protocol to generate high yields of type 1-polarizing messenger RNA-loaded dendritic cells for cancer vaccination. Cytotherapy 2018;20:1164-81.
59. Caux C, Dezutter DC, Schmitt D, Banchereau J. GM-CSF and TNF-alpha cooperate in the generation of dendritic langerhans cells. Nature 1992;360;258-61.
60. Olga Yu Leplina, Tamara V Tyrinova, Marina A Tikhonova, Alexander A Ostanin, Elena R Chernykh. Interferon alpha induces generation of semi-mature dendritic cells with high pro-inflammatory and cytotoxic potential. Cytokine 2015;71:1-7.
61. Xuemin Jin, Yong Yang, Xiaolei Liu, Haining Shi, Xuepeng Cai, Xuenong Luo, et al. Glutathione-S-transferase of trichinella spiralis regulates maturation and function of dendritic cells. Parasitology 2019;146:1725-32.
62. Xi Chen, Qianqian Shao, Shengnan Hao, Zhonghua Zhao, Yang Wang, Xiaofan Guo, et al. CTLA-4 positive breast cancer cells suppress dendritic cells maturation and function. Oncotarget 2017;8:13703-15.
63. Anna M Schulz, Susanne Stutte, Sebastian Hogl, Nancy Luckashenak, Diana Dudziak, Celine Leroy, et al. Cdc42-dependent actin dynamics controls maturation and secretory activity of dendritic cells. J Cell Biol 2015;211:553–67.
64. Valerie Chabot, Laurence Martin, Daniel Meley, Luc Sensebe, Christophe Baron, Yvon Lebranchu, et al. Unexpected impairment of TNF-?-induced maturation of human dendritic cells in vitro by IL-4. J Transl Med 2016;14:93.
65. Farhan Basit, Till Mathan, David Sancho, I Jolanda M de Vries. Human dendritic cell subsets undergo distinct metabolic reprogramming for immune response. Front Immunol 2018;9:2489.
66. Maria Gschwandtner, Philip Kienzl, Poojabahen Tajpara, Christopher Schuster, Gernot Stipek, Maria Buchberger, et al. The reticulum-associated protein RTN1A specifically identifies human dendritic cells. J Invest Dermatol 2018;138:1318-27.
67. Moignic A Le, Malard V, Benvegnu T, Lemiègre L, Berchel M, Jaffrès PA, et al. Preclinical evaluation of mRNA trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells. J Controlled Release 2018;278:110-21.
68. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011;331:1565–70.
69. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005;5:263-74.
70. Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res 1970;13:1–27.
71. Muul LM, Spiess PJ, Director EP, Rosenberg SA. Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J Immunol 1987;138:989–95.
72. Robert A Belderbos, Joachim G J V Aerts, Heleen Vroman. Enhancing dendritic cell therapy in solid tumors with immunomodulating conventional treatment. Mol Ther Oncolytics 2019;13:67-81.
73. Veronica Rainone, Cristina Martelli, Luisa Ottobrini, Mara Biasin, Gemma Texido, Anna Degrassi, et al. Immunological characterization of whole tumour lysate-loaded dendritic cells for cancer immunotherapy. PLoS One 2016;11:e0146622.
74. Madiha Derouazi, Wilma Di Berardino-Besson, Elodie Belnoue, Sabine Hoepner, Romy Walther, Mahdia Benkhoucha, et al. Novel cell-penetrating peptide-based vaccine induces robust CD4+and CD8+T cell-mediated antitumor immunity. Cancer Res 2015;75:3020-31.
75. Hirooka Y, Kawashima H, Ohno E, Ishikawa T, Kamigaki T, Goto S, et al. Comprehensive immunotherapy combined with intratumoral injection of zoledronate-pulsed dendritic cells, intravenous adoptive activated T lymphocyte and gemcitabine in unresectable locally advanced pancreatic carcinoma: a phase I/II trial. Oncotarget 2018;9:2838–47.
76. Lee JM, Lee MH, Garon E, Goldman JW, Salehi Rad R, Baratelli FE, et al. Phase I trial of intratumoral injection of CCL21 gene–modified dendritic cells in lung cancer elicits tumor-specific immune responses and CD8+T-cell infiltration. Clin Cancer Res 2017;23:4556–68.
77. Katja Fiedler, Sandra Lazzaro, Johannes Lutz, Susanne Rauch, Regina Heidenreich. mRNA Cancer vaccines. Recent Results Cancer Res 2016;209:61-85.
78. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, et al. Vaccination of patients with B–cell lymphoma using autologous antigen–pulsed dendritic cells. Nat Med 1996;2:52-8.
79. Ahmed MS, Bae YS. Dendritic cell-based therapeutic cancer vaccines, past, present and future. Clin Exp Vaccine Res 2014;3:113–6.
80. Constantino J, Gomes C, Falcao A, Neves BM, Cruz MT. Dendritic cell-based immunotherapy: a basic review and recent advances: Immunol Res 2017;65:798–810.
81. Bol KF, Schreibelt G, Gerritsen WR, de Vries IJM, Figdor CG. Dendritic cell–based immunotherapy: state of the art and beyond. Clin Cancer Res 2016;22:1897–906.
82. Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 2007;7:19–30.
83. Patricia M Santos, Lisa H Butterfield. Dendritic cell-based cancer vaccines. J Immunol 2018;200:443-9.
84. Fong L, Engleman EG. Dendritic cells in cancer immunotherapy. Annu Rev Immunol 2000;18:245–73.
85. Wei Li, Xiujun Song, Huijie Yu, Manze Zhang, Fengsheng Li, Cheng Cao, et al. Dendritic cell-based cancer immunotherapy for pancreatic cancer. Arab J Gastroenterol 2018;19:1-6.
86. Ludewig B, Oehen S, Barchiesi F, Schwendener RA, Hengartner H, Zinkernagel RM. Protective antiviral cytotoxic T cell memory is most efficiently maintained by restimulation via dendritic cells. J Immunol 1999;163:1839–44.
87. Guery JC, Ria F, Adorini L. Dendritic cells but not B cells present antigenic complexes to class II-restricted T cells after administration of protein in adjuvant. J Exp Med 1996;183:751–7.
88. Mehta Damani A, Markowicz S, Engleman EG. Generation of antigen-specific CD8+CTLs from naive precursors. J Immunol 1994;153:996–1003.
89. Mehta Damani A, Markowicz S, Engleman EG. Generation of antigen-specific CD4+T cell lines from naive precursors. Eur J Immunol 1995;25:1206–11.
90. Celluzzi CM, Mayordomo JI, Storkus WJ, Lotze MT, Falo LD. Jr peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J Exp Med 1996;183:283–7.
91. Paglia P, Chiodoni C, Rodolfo M, Colombo MP. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J Exp Med 1996;183:317–22.
92. Stefanie K Wculek, Joaquin Amores Iniesta, Ruth Conde Garrosa, Sofía C Khouili, Ignacio Melero, David Sancho. Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J Immunother Cancer 2019;7:100.
93. Dhodapkar MV, Steinman RM, Sapp M, Desai H, Fossella C, Krasovsky J, et al. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J Clin Invest 1999;104:173–80.
94. Schuler Thurner B, Dieckmann D, Keikavoussi P, Bender A, Maczek C, Jonuleit H, et al. Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+melanoma patients by mature monocytederived dendritic cells. J Immunol 2000;165:3492–6.
95. Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 1999;11:753–61.
96. Randolph GJ, Beaulieu S, Lebecque S, Steinman RM, Muller WA. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 1998;282:480–3.
97. Albert ML, Jegathesan M, Darnell RB. Dendritic cell maturation is required for the cross-tolerization of CD8+T cells. Nat Immunol 2001;2:1010–7.
98. Hitoshi Hasegawa, Image Takuya Matsumoto. Mechanisms of tolerance Induction by dendritic cells in vivo. Front Immunol 2018;9:350.

Published

01-11-2020

How to Cite

MISHRA, K. K., BHARADVA, . S., JOSHI, M. G., & GULBAKE, A. (2020). IN LABORATORY GENERATION AND MATURATION OF HUMAN MONOCYTE-DERIVED DENDRITIC CELLS FOR CANCER IMMUNOTHERAPY. International Journal of Applied Pharmaceutics, 12(4), 46–52. https://doi.org/10.22159/ijap.2020.v12s4.40104

Issue

Section

Full Proceeding Paper