PHYSICAL PROPERTIES AND RATE OF DIFFUSION TRANSETHOSOME CURCUMIN USING A COMBINATION OF TWEEN 60 AND SPAN 60 AS SURFACTANT
DOI:
https://doi.org/10.22159/ijap.2021.v13s3.14Keywords:
Curcumin, Transethosome, Surfactant, Physical properties, Diffusion rateAbstract
Objective: Curcumin penetration can be increased by formulating it into the transethosome system. Surfactant is one of the transethosome components that affect the physical properties and penetration of vesicles. In this study, a combination of two surfactants was used to see the effect of surfactants on physical properties and curcumin penetration.
Methods: This study used a combination of tween 60 and span 60 with a concentration ratio of 0:5 (F1), 1:1 (F2), 2:1 (F3), and 1:2 (F4). An evaluation included testing the distribution of particle size, zeta potential, and entrapment efficiency in the system. Evaluation continued with the determination of the diffusion rate in vitro.
Results: The transethosome system formed has a particle size of 167.9±4.7 nm-396±3.7 nm with a potential zeta value (-) 49.54±1.77 mV-(-) 59.05±0.95 mV, polydispersion index 0.0%-57.1% and entrapment efficiency of 83.76%-93.75%. The diffusion rate of F1 and F3 followed the Higuchi kinetics model, while F2 and F4 followed zero-order kinetics and the Korsmeyer-Peppas kinetics.
Conclusion: The combination of tween 60 and span 60 could form a nano-sized transethosome of curcumin. Diffusion rate testing results show that using a surfactant combination can increase the diffusion rate of curcumin, where there is a significant difference between each formula (p<0.05).
Downloads
References
2. Ibrahim MA, Yusrida D, Nurzalina AKK, Reem AA, Arshad AK. Ethosomal Nanocarriers The Impact of Constituents and Formulation Techniques on Ethosomal Properties, In vivo Studies, and Clinical Trials. International Journal of Nanomedicine 2016;11:2281-8.
3. Shaji J, Bajaj R. Transethosomes: A New Prospect for Enhanced Transdermal Delivery. International Journal of Pharmaceutical Sciences and Research 2018;9 Suppl 7:2681-5
4. Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD. A Novel Vesicular Carrier, Transethosom, for Enhanced Skin Delivery of Voriconazole: Characterization and In vitro/In vivo Evaluation. Colloids and Surface B: Biointerfaces 2012;92:299-304.
5. Shen S, Liu SZ, Zhang YS, Du MB, Liang AH, Song LH, Zu GY. Compound Antimalarial Ethosomal Cataplasm: Preparation, Evaluation, and Mechanism of Penetration Enhancement. International Journal of Nanomedicine 2015;10:4249-4253.
6. Garg V, Singh H, Bhatia A, Raza K, Singh SK, Singh R, Sarwar B. Systematic Development of Transethosomal Gel System of Piroxicam: Formulation Optimization, In vitro Evaluation, and Ex Vivo Assessment. AAPS PharmSciTech 2017;18 Suppl 1:58-71.
7. Rowe RC, Sheskey PJ, Marian E Quinn (Ed.). Polysorbate. In: Handbook of Pharmaceutical Excipients, 6th Ed. London: Pharmaceutical Press; 2009. p. 549-553,675-678.
8. Abdulbaqi MI, Darwis Y, Khan NA, Assi RA, Khan AA. Ethosomal Nanocarriers: The Impact of Constituents and Formulation Techniques on Ethosomal Properties, In vivo Studies, and Clinical Trials. International Journal of Medicine 2016; 11:2279–2304.
9. Ratnasari D, Anwar E. Karakterisasi Nanovesikel Transfersom sebagai Pembawa Rutin dalam Pengembangan Sediaan Transdermal. Jurnal Farmamedika 2016;1 Suppl 1:12-18.
10. Chen Z, Xia Y, Liao S, Huang Y, Li Y, He Y, Tong Z, Li B. Thermal Degradation Kinetics Study of Curcumin with Nonlinear Methods. Food Chemistry 2014;155:81-86.
11. Wulandari AD, Novianti A, Andika M, Amalia A. Profil Difusi Transethosome Kurkumin dalam Sediaan Gel yang Menggunakan Karbormer 934 sebagai Pembentuk Gel. Journal of Current Pharmaceutical Sciences 2019;3 Suppl 1:180-5.
12. Dash S, Murthy PN, Nath L, Chowdhury P. Review: Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Poloniae Pharmaceutica–Drug Release 2010;67 Suppl 3:217-223.
13. El-Nashar DE, Rozik NN, Soliman AM, Helaly F. Study the release kinetics of curcumin released from PVA/curcumin composites and its evaluation towards hepatocarcinoma. Journal of Applied Pharmaceutical Science 2016;6 Suppl 07:67-72
14. Das S, Chaudhury A. Recent Advances in Lipid Nanoparticle Formulation with Solid Matrix for Oral Drug Delivery. AAPS PharmSciTech 2011;12 Suppl 1:62-76.
15. Anonim. Analysis Software and Reference Kit Beckman Coulter Delsa Nano. USA: Beckman Coulter; 2015.
16. Mohanraj VJ, Chen Y. Nanoparticles–A Review. Tropical Journal of Pharmaceutical Research 2006;5 Suppl 1:561-573.
17. Lv G, Wang F, Cai W, Zhang X. Characterization of the Addition of Lipophilic Span 80 to The Hydrophilic Tween 80–Stabilized Emulsions. Colloids Surf A Physicochem 2014;447:8-13.
18. Sinko, PJ. Diffusion. In: Martin's Physical Pharmacy and Pharmaceutical Sciences, 6th Edition. New Jersey: Lippincott William and Wilkins, a Wolter Kluwer business; 2011. p. 223-57.
19. Martinez A, Arana P, Fernandez A, Olmo R, Teijon C, Blanco MD. Synthesis and Characterisation of Alginate/Chitosan Nanoparticles as Tamoxifen Controlled Delivery Systems. Journal of Microencapsulation 2013;30:398-408.
20. Unagolla JM, Jayasuriya AC. Drug Transport Mechanisms and In vitro Release Kinetics of Vancomycin Encapsulated Chitosan-Alginate Polyelectrolyte Microparticles as a Controlled Drug Delivery System. Eur J Pharm Sci 2018;144:199-209.