FUNCTIONALIZED POLYMERIC NANOPARTICLES: A NOVEL TARGETED APPROACH FOR ONCOLOGY CARE

Authors

  • PRASIDDHI R. RAIKAR Department of Pharmaceutics, KLE College of Pharmacy, Belagavi. A Constituent unit of KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India
  • PANCHAXARI M. DANDAGI Department of Pharmaceutics, KLE College of Pharmacy, Belagavi. A Constituent unit of KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India

DOI:

https://doi.org/10.22159/ijap.2021v13i6.42714

Keywords:

Cancer, Multimedicament, Tolerance, Nanoparticulate, Pluronic, Drug delivery, Hydrophobic, Micelles, Theranostic, Microenvironment

Abstract

Popular cancer therapies face extreme disadvantages, including multimedicament tolerance and non-target impact. These issues will lead to poorer patient conformity and poor levels of survival. Successful medical therapies for cancer patients are desperately required. Nano-particulate structures with a pluronic base represent revolutionary platforms for anti-cancer agent provision. These structures provide great potential for the advancement of cancer therapy due to their pharmacological properties and sufficient physicochemical characteristics. This review aims to offer a more detailed description of the pluronic drug delivery mechani sms that are currently available and explains pluronic as a medicinal polymer. Hydrophobic payload formulations and updated, targeted distribution mechanisms are explained based on pluronic formulations. This analysis offers a rundown of the current situation art related to the theranostic application of polymer micelles targeting the microenvironment of cancer cells. Some guidelines for the future scope and possible opportunities are also been addressed.

Search criteria: Primary sources such as Medline a principal component of PubMed, an online, searchable, and biomedical and life science research literature database has been used. It brings readers to almost any area of interest with research and journal articles. One of the internet resources of importance to get scientific publications is specialized scientific search engines known as Google Scholar a database of research material that can be searched for. I have used the online electronic access portal of Elsevier, such as Science Direct to its publications. Scopus is the biggest abstract and peer-reviewed literature database for scientific journals, books, and conference work. Keywords like Cancer, Pluronic, Nanoparticles, Chemotherapy, Cancer, Theranostic, Targeted, Micelles, and Core-shell are crucial as they notify search engines of the content of the site.

Range of years: 1992-2020.

Downloads

Download data is not yet available.

References

Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience. 2019;13:961. doi: 10.3332/ecancer.2019.961, PMID 31537986.

Wadhwa A, Mathura V, Lewis SA. Emerging novel Nano pharmaceuticals for drug delivery. Asian J Pharm Clin Res. 2018;11(7):35-42. doi: 10.22159/ajpcr.2018.v11i7.25149.

Jahan ST, Sadat SMA, Walliser M, Haddadi A. Targeted therapeutic nanoparticles: an immense promise to fight against cancer. J Drug Delivery. 2017;2017:9090325. doi: 10.1155/2017/9090325, PMID 29464123.

Urruticoechea A, Alemany R, Balart J, Villanueva A, Vinals F, Capella G. Recent advances in cancer therapy: an overview. Curr Pharm Des. 2010;16(1):3-10. doi: 10.2174/138161210789941847, PMID 20214614.

Williams GH, Stoeber K. The cell cycle and cancer. J Pathol. 2012;226(2):352-64. doi: 10.1002/path.3022, PMID 21990031.

Meyers CA. How chemotherapy damages the central nervous system. J Biol. 2008;7(4):11. doi: 10.1186/jbiol73, PMID 18439322.

Ismaili N, Amzerin M, Flechon A. Chemotherapy in advanced bladder cancer: current status and future. J Hematol Oncol. 2011;4(1):35. doi: 10.1186/1756-8722-4-35.

DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643-53. doi: 10.1158/0008-5472.CAN-07-6611, PMID 18974103.

Washington CM, Leaver DT. Principles and practice of radiation therapy-e-book. Elsevier Health Sciences; 2015.

Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193-9. doi: 10.7150/ijms.3635, PMID 22408567.

Naef AP. Hugh morriston davies: first dissection lobectomy in 1912. Ann Thorac Surg. 1993;56(4):988-9. doi: 10.1016/0003-4975(93)90377-t, PMID 8215687.

Phillips EH, Franklin M, Carroll BJ, Fallas MJ, Ramos R, Rosenthal D. Laparoscopic colectomy. Ann Surg. 1992;216(6):703-7. doi: 10.1097/00000658-199212000-00015, PMID 1466626.

Singletary SE. Minimally invasive techniques in breast cancer treatment. Semin Surg Oncol. 2001;20(3):246-50. doi: 10.1002/ssu.1040, PMID 11523110.

Sherwood JT, Brock MV. Lung cancer: new surgical approaches. Respirology. 2007;12(3):326-32. doi: 10.1111/j.1440-1843.2007.01083.x, PMID 17539834.

Hashizume M. MRI-guided laparoscopic and robotic surgery for malignancies. Int J Clin Oncol. 2007;12(2):94-8. doi: 10.1007/s10147-007-0664-z, PMID 17443276.

Sun C, Fang C, Stephen Z, Veiseh O, Hansen S, Lee D, Ellenbogen RG, Olson J, Zhang M. Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles. Nanomedicine (Lond). 2008;3(4):495-505. doi: 10.2217/17435889.3.4.495, PMID 18694312.

Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials. 2008;29(4):487-96. doi: 10.1016/j.biomaterials. 2007.08.050, PMID 17964647.

Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA. 2008;105(45):17356-61. doi: 10.1073/pnas.0809154105, PMID 18978032.

Fayter D, Corbett M, Heirs M, Fox D, Eastwood A. A systematic review of photodynamic therapy in the treatment of pre-cancerous skin conditions, Barrett’s oesophagus and cancers of the biliary tract, brain, head and neck, lung, oesophagus and skin. In: NIHR Health Technology Assessment Programme: executive summaries. NIHR J Library; 2010.

Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci. 2008;23(3):217-28. doi: 10.1007/s10103-007-0470-x, PMID 17674122.

Griffin RJ, Dings RP, Jamshidi-Parsian A, Song CW. Mild temperature hyperthermia and radiation therapy: role of tumour vascular thermotolerance and relevant physiological factors. Int J Hyperthermia. 2010;26(3):256-63. doi: 10.3109/02656730903453546, PMID 20210610.

Hurwitz MD. Today’s thermal therapy: not your father’s hyperthermia: challenges and opportunities in the application of hyperthermia for the 21st-century cancer patient. Am J Clin Oncol. 2010;33(1):96-100. doi: 10.1097/COC.0b013e3181817a75, PMID 19636240.

Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, von Deimling A, Felix R. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol. 2006;78(1):7-14. doi: 10.1007/s11060-005-9059-z, PMID 16314937.

Kawai N, Ito A, Nakahara Y, Futakuchi M, Shirai T, Honda H, Kobayashi T, Kohri K. Anticancer effect of hyperthermia on prostate cancer mediated by magnetite cationic liposomes and immune‐response induction in transplanted syngeneic rats. Prostate. 2005;64(4):373-81. doi: 10.1002/pros.20253, PMID 15754344.

Maier Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol. 2007;81(1):53-60. doi: 10.1007/ s11060-006-9195-0, PMID 16773216.

Lehmann J, Natarajan A, DeNardo GL, Ivkov R, Foreman AR, Catapano C, Mirick G, Quang T, Gruettner C, Denardo SJ. Short communication: nanoparticle thermotherapy and external beam radiation therapy for human prostate cancer cells. Cancer Biother Radiopharm. 2008;23(2):265-71. doi: 10.1089/ cbr.2007.0411, PMID 18454696.

Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 2008;26(32):5233-9. doi: 10.1200/ JCO.2008.16.5449, PMID 18809613.

Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol. 2009;21(2):233-40. doi: 10.1016/j.coi.2009.03.002, PMID 19304471.

Ren J, Di L, Song G, Yu J, Jia J, Zhu Y, Yan Y, Jiang H, Liang X, Che L, Zhang J, Wan F, Wang X, Zhou X, Lyerly HK. Selections of an appropriate regimen of high-dose chemotherapy combined with adoptive cellular therapy with dendritic and cytokine-induced killer cells improved progression-free and overall survival in patients with metastatic breast cancer: reargument of such contentious therapeutic preferences. Clin Transl Oncol. 2013;15(10):780-8. doi: 10.1007/s12094-013-1001-9, PMID 23359185.

Arruebo M, Vilaboa N, Saez-Gutierrez B, Lambea J, Tres A, Valladares M, González-Fernández A. Assessment of the evolution of cancer treatment therapies. Cancers. 2011;3(3):3279-330. doi: 10.3390/cancers3033279, PMID 24212956.

Patil PM, Chaudhari PD, Sahu M, Duragkar NJ. Review article on gene therapy. Res J Pharmacol Pharmacodyn. 2012;4:77-83.

Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine. 2014;9:467-83. doi: 10.2147/IJN.S36654, PMID 24531078.

Cisterna BA, Kamaly N, Choi WI, Tavakkoli A, Farokhzad OC, Vilos C. Targeted nanoparticles for colorectal cancer. Nanomedicine (Lond). 2016;11(18):2443-56. doi: 10.2217/nnm-2016-0194, PMID 27529192.

Yuan X, Kang C, Zhao Y, Gu M, Pu P, Tian N, Sheng J. Surface multi-functionalization of poly (lactic acid) nanoparticles and c6 glioma cell targeting in vivo. Chinese J Polym Sci. 2009;27(2):231-9. doi: 10.1142/S0256767909003868.

Zhou J, Romero G, Rojas E, Ma L, Moya S, Gao C. Layer by layer chitosan/alginate coatings on poly (lactide-co-glycolide) nanoparticles for antifouling protection and folic acid-binding to achieve selective cell targeting. J Colloid Interface Sci. 2010;345(2):241-7. doi: 10.1016/j.jcis.2010.02.004, PMID 20227712.

Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the Nano era: an overview and perspectives. Oncol Rep. 2017;38(2):611-24. doi: 10.3892/or.2017.5718, PMID 28627697.

Hemant K, Raizaday A, Sivadasu P, Uniyal S, Kumar SH. Cancer nanotechnology: nanoparticulate drug delivery for the treatment of cancer. Int J Pharm Pharm Sci. 2015;7:40-6.

Autio KA, Garcia JA, Alva AS, Hart LL, Milowsky MI, Posadas EM. A phase 2 study of BIND-014 (PSMA-targeted docetaxel nanoparticle) was administered to patients with chemotherapy-naïve metastatic castration-resistant prostate cancer (mCRPC). American Society of Clinical Oncology; 2016.

Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41(7):2545-61. doi: 10.1039/c2cs15327k, PMID 22334259.

Mohamed F, van der Walle CF. Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J Pharm Sci. 2008;97(1):71-87. doi: 10.1002/jps.21082, PMID 17722085.

Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135-46. doi: 10.1016/j.jconrel.2010.08.027, PMID 20797419.

Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006;25(34):4633-46. doi: 10.1038/sj.onc.1209597, PMID 16892078.

Bazak R, Houri M, El Achy SE, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: a comprehensive review of the literature. Mol Clin Oncol. 2014;2(6):904-8. doi: 10.3892/mco.2014.356, PMID 25279172.

Cengelli F, Maysinger D, Tschudi Monnet F, Montet X, Corot C, Petri Fink A, Hofmann H, Juillerat Jeanneret L. Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures. J Pharmacol Exp Ther 2006;318(1):108-16. doi: 10.1124/jpet.106.101915, PMID 16608917.

Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGpegylation for imaging and therapy. Nanomedicine (Lond). 2011;6(4):715-28. doi: 10.2217/nnm.11.19, PMID 21718180.

Moghimi SM, Hunter AC. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol. 2000;18(10):412-20. doi: 10.1016/s0167-7799(00)01485-2, PMID 10998507.

Shirshahi V, Shamsipour F, Zarnani AH, Verdi J, Saber R. Active targeting of HER2-positive breast cancer cells by Herceptin-functionalized organically modified silica nanoparticles. Cancer Nanotechnol. 2013;4(1-3):27-37. doi: 10.1007/s12645-013-0035-6, PMID 26069499.

Yang Z, Kang SG, Zhou R. Nanomedicine: de novo design of nanodrugs. Nanoscale. 2014;6(2):663-77. doi: 10.1039/c3nr04535h, PMID 24305636.

Muro S. Challenges in design and characterization of ligand-targeted drug delivery systems. J Controlled Release. 2012;164(2):125-37. doi: 10.1016/j.jconrel.2012.05.052, PMID 22709588.

Wang J, Tian S, Petros RA, Napier ME, DeSimone JM. The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies. J Am Chem Soc. 2010;132(32):11306-13. doi: 10.1021/ja1043177, PMID 20698697.

Lee H, Fonge H, Hoang B, Reilly RM, Allen C. The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Mol Pharm. 2010;7(4):1195-208. doi: 10.1021/mp100038h, PMID 20476759.

Xin H, Jiang X, Gu J, Sha X, Chen L, Law K, Chen Y, Wang X, Jiang Y, Fang X. Angiopep-conjugated poly (ethylene glycol)-co-poly (ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials. 2011;32(18):4293-305. doi: 10.1016/j.biomaterials.2011.02.044, PMID 21427009.

Kim BJ, Im SS, Oh SG. Investigation on the solubilization locus of aniline-HCl salt in SDS micelles with 1H NMR spectroscopy. Langmuir. 2001;17(2):565-6. doi: 10.1021/la0012889.

Sun B, Ranganathan B, Feng SS. Multifunctional poly (D, L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Ttrastuzumab for targeted chemotherapy of breast cancer. Biomaterials. 2008; 29(4):475-86. doi: 10.1016/j.biomaterials.2007.09.038, PMID 17953985.

Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, et al, Torensma R, Figdor CG. Targeted PLGA nNano-but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Controlled Release. 2010;144(2):118-26. doi: 10.1016/j.jconrel.2010.02.013.

Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA–PEG nanoparticles. Proc Natl Acad Sci USA. 2008;105(45):17356-61. doi: 10.1073/pnas.0809154105, PMID 18978032.

Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Delivery Rev. 2011;63(3):131-5. doi: 10.1016/j.addr.2010.03.011, PMID 20304019.

Wang Z, Chui WK, Ho PC. Design of a multifunctional PLGA nanoparticulate drug delivery system: evaluation of its physicochemical properties and anticancer activity to malignant cancer cells. Pharm Res. 2009;26(5):1162-71. doi: 10.1007/s11095-009-9837-y, PMID 19191012.

Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA. 2006;103(16):6315-20. doi: 10.1073/ pnas.0601755103, PMID 16606824.

Esmaeili F, Ghahremani MH, Ostad SN, Atyabi F, Seyedabadi M, Malekshahi MR, Amini M, Dinarvand R. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA–PEG–folate conjugate. J Drug Target. 2008;16(5):415-23. doi: 10.1080/10611860802088630, PMID 18569286.

Tiwari S, Kansara V, Bahadur P. Targeting anticancer drugs with pluronic aggregates: recent updates. Int J Pharm. 2020;586:119544. doi: 10.1016/j.ijpharm.2020.119544.

Akash MSH, Rehman K. Recent progress in biomedical applications of pluronic (PF127): pharmaceutical perspectives. J Controlled Release. 2015;209:120-38. doi: 10.1016/j.jconrel.2015.04.032, PMID 25921088.

Bodratti AM, Sarkar B, Alexandridis P. Adsorption of poly (ethylene oxide)-containing amphiphilic polymers on solid–liquid interfaces: fundamentals and applications. Adv Colloid Interface Sci. 2017;244:132-63. doi: 10.1016/j.cis.2016.09.003, PMID 28069108.

Lahiri B, Mukhopadhyay SD. Credibility of farm information disseminated through newspapers and radio programme: a case study. Indian Res J Ext Educ. 2016;13:1-8.

Yang L, Alexandridis P. Physicochemical aspects of drug delivery and release from polymer-based colloids. Curr Opin Colloid Interface Sci. 2000;5(1-2):132-43. doi: 10.1016/S1359-0294(00)00046-7.

Alexandridis P. Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers. Chem Eng Technol. 2011;34(1):15-28. doi: 10.1002/ceat.201000335.

Agnely F, Djedour A, Bochot A, Grossiord JL. Properties of various thermoassociating polymers: pharmaceutical and cosmetic applications. J Drug Delivery Sci Technol. 2006;16(1):3-10. doi: 10.1016/S1773-2247(06)50001-2.

Tadros T. Viscoelastic properties of sterically stabilised emulsions and their stability. Adv Colloid Interface Sci. 2015;222:692-708. doi: 10.1016/j.cis.2015.03.001, PMID 25900262.

Tadros TF. Interfacial phenomena and colloid stability: industrial applications. Walter de Gruyter GmbH & Co KG; 2015.

Chang Y, Chu WL, Chen WY, Zheng J, Liu L, Ruaan RC. A systematic SPR study of human plasma protein adsorption behavior on the controlled surface packing of self‐assembled poly (ethylene oxide) triblock copolymer surfaces. J Biomed Mater Res Part. 2010;93:400-8.

Alvarez Lorenzo C, Sosnik A, Concheiro A. PEO-PPO block copolymers for passive micellar targeting and overcoming multidrug resistance in cancer therapy. Curr Drug Targets. 2011;12(8):1112-30. doi: 10.2174/138945011795906615, PMID 21443477.

Singh Joy SD, McLain VC. Safety assessment of poloxamers 101, 105, 108, 122, 123, 124, 181, 182, 183, 184, 185, 188, 212, 215, 217, 231, 234, 235, 237, 238, 282, 284, 288, 331, 333, 334, 335, 338, 401, 402, 403, and 407, poloxamer 105 benzoate, and poloxamer 182 dibenzoate as used in cosmetics. Int J Toxicol. 2008;27 Suppl 2:93-128. doi: 10.1080/10915810802244595, PMID 18830866.

Grindel JM, Jaworski T, Piraner O, Emanuele RM, Balasubramanian M. Distribution, metabolism, and excretion of a novel surface-active agent, purified poloxamer 188, in rats, dogs, and humans. J Pharm Sci. 2002;91(9):1936-47. doi: 10.1002/jps.10190, PMID 12210041.

Batrakova E, Lee S, Li S, Venne A, Alakhov V, Kabanov A. Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharm Res. 1999;16(9):1373-9. doi: 10.1023/a:1018942823676, PMID 10496652.

Venne A, Li S, Mandeville R, Kabanov A, Alakhov V. Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res. 1996;56(16):3626-9. PMID 8705995.

Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Delivery Rev. 2002;54(5):759-79. doi: 10.1016/s0169-409x(02)00047-9, PMID 12204601.

Altan N, Chen Y, Schindler M, Simon SM. Defective acidification in human breast tumor cells and implications for chemotherapy. J Exp Med. 1998;187(10):1583-98. doi: 10.1084/jem.187.10.1583, PMID 9584137.

Breuninger LM, Paul S, Gaughan K, Miki T, Chan A, Aaronson SA, Kruh GD. Expression of the multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Cancer Res. 1995;55(22):5342-7. PMID 7585598.

Cleary I, Doherty G, Moran E, Clynes M. The multidrug-resistant human lung tumour cell line, DLKP-A10, expresses novel drug accumulation and sequestration systems. Biochem Pharmacol. 1997;53(10):1493-502. doi: 10.1016/s0006-2952(97)00003-8, PMID 9260877.

Nooter K, Stoter G. Molecular mechanisms of multidrug resistance in cancer chemotherapy. Pathol Res Pract. 1996;192(7):768-80. doi: 10.1016/S0344-0338(96)80099-9, PMID 8880878.

Shapiro AB, Fox K, Lee P, Yang YD, Ling V. Functional intracellular P‐glycoprotein. Int J Cancer. 1998;76(6):857-64. doi: 10.1002/(sici)1097-0215(19980610)76:6<857:aid-ijc15>3.0.co;2-#, PMID 9626353.

Benderra Z, Morjani H, Trussardi A, Manfait M. Role of the vacuolar H+-ATPase in daunorubicin distribution in etoposide-resistant MCF7 cells overexpressing the multidrug-resistance associated protein. Int J Oncol. 1998;12(3):711-5. doi: 10.3892/ijo.12.3.711, PMID 9472114.

Jung YW, Lee H, Kim JY, Koo EJ, Oh KS, Yuk SH. Pluronic-based core/shell nanoparticles for drug delivery and diagnosis. Curr Med Chem. 2013;20(28):3488-99. doi: 10.2174/09298673113209990036, PMID 23745558.

Aydin F, Chu X, Uppaladadium G, Devore D, Goyal R, Murthy NS, Zhang Z, Kohn J, Dutt M. Self-assembly and critical aggregation concentration measurements of ABA triblock copolymers with varying B block types: model development, prediction, and validation. J Phys Chem B. 2016;120(15):3666-76. doi: 10.1021/acs.jpcb.5b12594, PMID 27031284.

Srinivas G, Discher DE, Klein ML. Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nat Mater. 2004;3(9):638-44. doi: 10.1038/nmat1185, PMID 15300242.

Nawaz S, Carbone P. Coarse-graining poly (ethylene oxide)–poly (propylene oxide)–poly (ethylene oxide) (PEO–PPO–PEO) block copolymers using the MARTINI force field. J Phys Chem B. 2014;118(6):1648-59. doi: 10.1021/jp4092249, PMID 24446682.

Bressel K, Gradzielski M. Enhancing the stability of spontaneously self-assembled vesicles - the effect of polymer architecture. Soft Matter. 2015;11(12):2445-53. doi: 10.1039/c4sm02746a, PMID 25668397.

Bryskhe K, Jansson J, Topgaard D, Schillén K, Olsson U. Spontaneous vesicle formation in a block copolymer system. J Phys Chem B. 2004;108(28):9710-9. doi: 10.1021/jp031313u.

Nagarajan R. ’Non-equilibrium’ block copolymer micelles with glassy cores: A predictive approach based on the theory of equilibrium micelles. J Colloid Interface Sci. 2015;449:416-27. doi: 10.1016/j.jcis.2014.12.077, PMID 25595626.

Bouchemal K, Agnely F, Koffi A, Ponchel G. A concise analysis of the effect of temperature and propanediol-1, 2 on pluronic F127 micellization using isothermal titration microcalorimetry. J Colloid Interface Sci. 2009;338(1):169-76. doi: 10.1016/j.jcis.2009.05.075, PMID 19580975.

Liang X, Guo C, Ma J, Wang J, Chen S, Liu H. Temperature-dependent aggregation and disaggregation of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymer in aqueous solution. J Phys Chem B. 2007;111(46):13217-20. doi: 10.1021/jp074990n, PMID 17973418.

Ganguly R, Aswal VK, Hassan PA, Gopalakrishnan IK, Yakhmi JV. Sodium chloride and ethanol-induced sphere to rod transition of triblock copolymer micelles. J Phys Chem B. 2005;109(12):5653-8. doi: 10.1021/jp0468408, PMID 16851610.

Narang P, Yadav N, Venkatesu P. Scrutinizing the effect of various nitrogen-containing additives on the micellization behavior of a triblock copolymer. J Colloid Interface Sci. 2019;553:655-65. doi: 10.1016/j.jcis.2019.06.074, PMID 31252181.

Parekh P, Dey J, Kumar S, Nath S, Ganguly R, Aswal VK, Bahadur P. Butanol solubilization in aqueous F127 solution: investigating the enhanced micellar solvation and consequent improvement in gelation characteristics. Colloids Surf B Biointerfaces. 2014;114:386-91. doi: 10.1016/j.colsurfb.2013.10.030, PMID 24252230.

Bharatiya B, Aswal VK, Hassan PA, Bahadur P. Influence of a hydrophobic diol on the micellar transitions of pluronic P85 in aqueous solution. J Colloid Interface Sci. 2008; 320(2):452-9. doi: 10.1016/j.jcis.2008.01.050, PMID 18275966.

Lee CF, Yang CH, Lin TL, Bahadur P, Chen LJ. Role of molecular weight and hydrophobicity of amphiphilic tri-block copolymers in temperature-dependent co-micellization process and drug solubility. Colloids Surf B Biointerfaces. 2019;183:110461. doi: 10.1016/j.colsurfb.2019.110461.

Wang Q, Li L, Jiang S. Effects of a PPO− PEO− PPO triblock copolymer on micellization and gelation of a PEO− PPO− PEO triblock copolymer in aqueous solution. Langmuir. 2005;21(20):9068-75. doi: 10.1021/la051537z, PMID 16171334.

Sarkar B, Ravi V, Alexandridis P. Micellization of amphiphilic block copolymers in binary and ternary solvent mixtures. J Colloid Interface Sci. 2013;390(1):137-46. doi: 10.1016/j.jcis.2012.09.028, PMID 23099248.

Lai TC, Kataoka K, Kwon GS. Pluronic-based cationic block copolymer for forming pDNA polyplexes with enhanced cellular uptake and improved transfection efficiency. Biomaterials. 2011;32(20):4594-603. doi: 10.1016/j.biomaterials.2011.02.065, PMID 21453964.

Lu Y, Zhang X, Fan Z, Du B. Adsorption of PNIPAm110-PEO100-PPO65-PEO100-PNIPAm110 pentablock terpolymer on hydrophobic gold. Polymer. 2012; 53(17):3791-801. doi: 10.1016/j.polymer.2012.06.022.

Cho EB, Choi E, Yang S, Jaroniec M. Hollow mesoporous organosilica nanospheres templated with flower-like micelles of pentablock copolymers. J Colloid Interface Sci. 2018;528:124-34. doi: 10.1016/j.jcis.2018.05.076, PMID 29843060.

Vyas B, Pillai SA, Tiwari S, Bahadur P. Effects of head group and counter-ion variation in cationic surfactants on the microstructures of EO-PO block copolymer micelles. Colloids Interface Sci Commun. 2019;33. doi: 10.1016/j.colcom.2019.100216, PMID 100216.

Chen CY, Wang YC, Hung CC. In vitro dual-modality chemo-photodynamic therapy via stimuli-triggered polymeric micelles. React Funct Polym. 2016;98:56-64. doi: 10.1016/j.reactfunctpolym.2015.11.008.

Gan H, Chen L, Sui X, Wu B, Zou S, Li A, Zhang Y, Liu X, Wang D, Cai S, Liu X, Liang Y, Tang X. Enhanced delivery of sorafenib with anti-GPC3 antibody-conjugated TPGS-b-PCL/Pluronic P123 polymeric nanoparticles for targeted therapy of hepatocellular carcinoma. Mater Sci Eng C Mater Biol Appl. 2018;91:395-403. doi: 10.1016/j.msec.2018.05.011, PMID 30033270.

Hao J, Tong T, Jin K, Zhuang Q, Han T, Bi Y, Wang J, Wang X. Folic acid-functionalized drug delivery platform of resveratrol based on pluronic 127/D-α-tocopheryl polyethylene glycol 1000 succinate mixed micelles. Int J Nanomed. 2017;12:2279-92. doi: 10.2147/IJN.S130094, PMID 28392687.

Xiong XY, Pan X, Tao L, Cheng F, Li ZL, Gong YC, Li YP. Enhanced effect of folated pluronic F87-PLA/TPGS mixed micelles on targeted delivery of paclitaxel. Int J Biol Macromol. 2017;103:1011-8. doi: 10.1016/j.ijbiomac.2017.05.136, PMID 28552723.

Lübtow MM, Haider MS, Kirsch M, Klisch S, Luxenhofer R. Like dissolves like? A comprehensive evaluation of partial solubility parameters to predict polymer-drug compatibility in ultrahigh drug-loaded polymer micelles. Biomacromolecules. 2019;20(8):3041-56. doi: 10.1021/acs.biomac.9b00618, PMID 31318531.

Xiao B, Zhang M, Viennois E, Zhang Y, Wei N, Baker MT, Jung Y, Merlin D. Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials. 2015;48:147-60. doi: 10.1016/j.biomaterials.2015.01.014, PMID 25701040.

Zhang Y, Song W, Geng J, Chitgupi U, Unsal H, Federizon J, Rzayev J, Sukumaran DK, Alexandridis P, Lovell JF. Therapeutic surfactant-stripped frozen micelles. Nat Commun. 2016;7:11649. doi: 10.1038/ncomms11649, PMID 27193558.

Kim BJ, Im SS, Oh SG. Investigation on the solubilization locus of aniline-HCl salt in SDS micelles with 1H NMR spectroscopy. Langmuir. 2001;17(2):565-6. doi: 10.1021/la0012889.

Jackson JK, Springate CM, Hunter WL, Burt HM. Neutrophil activation by plasma opsonized polymeric microspheres: inhibitory effect of pluronic F127. Biomaterials. 2000;21(14):1483-91. doi: 10.1016/s0142-9612(00)00034-x, PMID 10872777.

Lee ES, Oh YT, Youn YS, Nam M, Park B, Yun J, Kim JH, Song HT, Oh KT. Binary mixing of micelles using pluronics for a nano-sized drug delivery system. Colloids Surf B Biointerfaces. 2011;82(1):190-5. doi: 10.1016/j.colsurfb.2010.08.033, PMID 20850281.

Tiwari S, Tirosh B, Rubinstein A. Increasing the affinity of cationized polyacrylamide-paclitaxel nanoparticles towards colon cancer cells by a surface recognition peptide. Int J Pharm. 2017;531(1):281-91. doi: 10.1016/j.ijpharm.2017.08.092, PMID 28844903.

Luo YY, Xiong XY, Cheng F, Gong YC, Li ZL, Li YP. The targeting properties of folate-conjugated pluronic F127/poly (lactic-co-glycolic) nanoparticles. Int J Biol Macromol. 2017;105(1):711-9. doi: 10.1016/j.ijbiomac.2017.07.085, PMID 28716749.

Song H, He R, Wang K, Ruan J, Bao C, Li N, Ji J, Cui D. Anti-HIF-1α antibody-conjugated pluronic triblock copolymers encapsulated with paclitaxel for tumor targeting therapy. Biomaterials. 2010;31(8):2302-12. doi: 10.1016/j.biomaterials.2009.11.067, PMID 20004970.

Zhang W, Shi Y, Chen Y, Ye J, Sha X, Fang X. Multifunctional pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug-resistant tumors. Biomaterials. 2011;32(11):2894-906. doi: 10.1016/j.biomaterials.2010.12.039, PMID 21256584.

Minko T, Batrakova EV, Li S, Li Y, Pakunlu RI, Alakhov VY, Kabanov AV. Pluronic block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells. J Controlled Release. 2005;105(3):269-78. doi: 10.1016/j.jconrel.2005.03.019, PMID 15939500.

Alakhova DY, Kabanov AV. Pluronics and MDR reversal: an update. Mol Pharm. 2014;11(8):2566-78. doi: 10.1021/mp500298q, PMID 24950236.

Khaliq NU, Park DY, Yun BM, Yang DH, Jung YW, Seo JH, Hwang CS, Yuk SH. Pluronics: intelligent building units for targeted cancer therapy and molecular imaging. Int J Pharm. 2019;556:30-44. doi: 10.1016/j.ijpharm.2018.11.064, PMID 30529667.

Li Z, Qiu L, Chen Q, Hao T, Qiao M, Zhao H, Zhang J, Hu H, Zhao X, Chen D, Mei L. pH-sensitive nanoparticles of poly (l-histidine)–poly (lactide-co-glycolide)–tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomater. 2015;11:137-50. doi: 10.1016/j.actbio.2014.09.014, PMID 25242647.

Wu W, Wang J, Lin Z, Li X, Li J. Tumor‐acidity activated surface charge‐conversion of polymeric nanocarriers for enhanced cell adhesion and targeted drug release. Macromol Rapid Commun. 2014;35(19):1679-84. doi: 10.1002/marc.201400362, PMID 25171076.

Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Controlled Release. 2008;132(3):164-70. doi: 10.1016/j.jconrel.2008.05.003, PMID 18571265.

Liang Y, Su Z, Yao Y, Zhang N. Preparation of pH-sensitive pluronic-docetaxel conjugate micelles to balance the stability and controlled release issues. Materials (Basel). 2015;8(2):379-91. doi: 10.3390/ma8020379, PMID 28787944.

Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang XJ. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32(4):693-710. doi: 10.1016/j.biotechadv.2013.11.009, PMID 24309541.

Xu C, Xu J, Zheng Y, Fang Q, Lv X, Wang X, Tang R. Active-targeting and acid-sensitive pluronic prodrug micelles for efficiently overcoming MDR in breast cancer. J Mater Chem B. 2020;8(13):2726-37. doi: 10.1039/c9tb02328c, PMID 32154530.

Golwala P, Rathod S, Patil R, Joshi A, Ray D, Aswal VK, Bahadur P, Tiwari S. Effect of cosurfactant addition on phase behavior and microstructure of a water-dilutable microemulsion. Colloids Surf B Biointerfaces. 2020;186:110736. doi: 10.1016/j.colsurfb.2019.110736.

Cheng X, Zeng X, Zheng Y, Fang Q, Wang X, Wang J, Tang R. pH-sensitive pluronic micelles combined with oxidative stress amplification for enhancing multidrug resistance breast cancer therapy. J Colloid Interface Sci. 2020;565:254-69. doi: 10.1016/j.jcis.2020.01.029, PMID 31978788.

Wang H, Jiang H, Corbet C, de Mey S, Law K, Gevaert T, Feron O, De Ridder M. Piperlongumine increases the sensitivity of colorectal cancer cells to radiation: involvement of ROS production via dual inhibition of glutathione and thioredoxin systems. Cancer Lett. 2019;450:42-52. doi: 10.1016/j.canlet.2019.02.034, PMID 30790679.

Deepagan VG, Kwon S, You DG, Nguyen VQ, Um W, Ko H, Lee H, Jo DG, Kang YM, Park JH. In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery. Biomaterials. 2016;103:56-66. doi: 10.1016/j.biomaterials.2016.06.044, PMID 27372421.

Ji S, Xia J, Xu H. Dynamic chemistry of selenium: Se–N and Se–Se dynamic covalent bonds in polymeric systems. ACS Publications; 2016.

Tong R, Lu X, Xia H. A facile mechanophore functionalization of an amphiphilic block copolymer towards remote ultrasound and redox dual stimulus responsiveness. Chem Commun (Camb). 2014;50(27):3575-8. doi: 10.1039/c4cc00103f, PMID 24566678.

Li F, Xie C, Cheng Z, Xia H. Ultrasound responsive block copolymer micelle of poly (ethylene glycol)–poly (propylene glycol) obtained through click reaction. Ultrason Sonochem. 2016;30:9-17. doi: 10.1016/j.ultsonch.2015.11.023, PMID 26703197.

Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 2020;10(8):3503-17. doi: 10.7150/thno.42174, PMID 32206104.

Luo L, Zhang Q, Luo Y, He Z, Tian X, Battaglia G. Thermosensitive nanocomposite gel for intra-tumoral two-photon photodynamic therapy. J Controlled Release. 2019;298:99-109. doi: 10.1016/j.jconrel.2019.01.019, PMID 30703391.

Mukerji R, Schaal J, Li X, Bhattacharyya J, Asai D, Zalutsky MR, Chilkoti A, Liu W. Spatiotemporally photoradiation-controlled intratumoral depot for the combination of brachytherapy and photodynamic therapy for solid tumor. Biomaterials. 2016;79:79-87. doi: 10.1016/j.biomaterials.2015.11.064, PMID 26702586.

Shi S, Zhang L, Zhu M, Wan G, Li C, Zhang J, Wang Y, Wang Y. Reactive oxygen species-responsive nanoparticles based on peglated prodrug for targeted treatment of oral tongue squamous cell carcinoma by combining photodynamic therapy and chemotherapy. ACS Appl Mater Interfaces. 2018;10(35):29260-72. doi: 10.1021/acsami.8b08269, PMID 30106279.

Uthaman S, Pillarisetti S, Mathew AP, Kim Y, Bae WK, Huh KM, Park IK. Long circulating photoactivable nanomicelles with tumor localized activation and ROS triggered self-accelerating drug release for enhanced locoregional chemo-photodynamic therapy. Biomaterials. 2020;232:119702. doi: 10.1016/j.biomaterials.2019.119702.

Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Controlled Release. 2001;73(2-3):137-72. doi: 10.1016/s0168-3659(01)00299-1, PMID 11516494.

Wang Y, Yu L, Han L, Sha X, Fang X. Difunctional pluronic copolymer micelles for paclitaxel delivery: synergistic effect of folate-mediated targeting and pluronic-mediated overcoming multidrug resistance in tumor cell lines. Int J Pharm. 2007;337(1-2):63-73. doi: 10.1016/j.ijpharm.2006.12.033, PMID 17289311.

Zhang W, Shi Y, Chen Y, Yu S, Hao J, Luo J, Sha X, Fang X. Enhanced antitumor efficacy by paclitaxel-loaded pluronic P123/F127 mixed micelles against non-small cell lung cancer based on passive tumor targeting and modulation of drug resistance. Eur J Pharm Biopharm. 2010;75(3):341-53. doi: 10.1016/j.ejpb.2010.04.017, PMID 20451605.

Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V. Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials. 2008;29(29):4012-21. doi: 10.1016/ j.biomaterials.2008.07.004, PMID 18649936.

Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm. 2005;2(3):194-205. doi: 10.1021/ mp0500014, PMID 15934780.

Liu TY, Hu SH, Liu KH, Shaiu RS, Liu DM, Chen SY. Instantaneous drug delivery of magnetic/thermally sensitive nanospheres by a high-frequency magnetic field. Langmuir. 2008;24(23):13306-11. doi: 10.1021/la801451v, PMID 18954093.

Bae WK, Park MS, Lee JH, Hwang JE, Shim HJ, Cho SH, Kim DE, Ko HM, Cho CS, Park IK, Chung IJ. Docetaxel-loaded thermoresponsive conjugated linoleic acid-incorporated poloxamer hydrogel for the suppression of peritoneal metastasis of gastric cancer. Biomaterials. 2013;34(4):1433-41. doi: 10.1016/j.biomaterials.2012.10.077, PMID 23174142.

Li YP, Sun LZ, Xiong XY, Li ZL, Xing TK, Yao LH. Controlled Release characteristics of PLA-pluronic-PLA nano-sized vesicles in vitro. In: advanced materials research. AMR. 2013;785-786:493-7. doi: 10.4028/www.scientific.net/AMR.785-786.493.

Lin H-R, Li Y-S, Lin Y-J. Novel microencapsulated pluronic–chitosan nanomicelles for lung delivery. Colloid Polym Sci. 2016;294(7):1209-16. doi: 10.1007/s00396-016-3879-6.

Zhang J, Li Y, Fang X, Zhou D, Wang Y, Chen M. TPGS-g-PLGA/Pluronic F68 mixed micelles for tanshinone IIA delivery in cancer therapy. Int J Pharm. 2014;476(1-2):185-98. doi: 10.1016/j.ijpharm.2014.09.017, PMID 25223472.

Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003;972(7):1343-55. doi: 10.1002/jps.10397, PMID 12820139.

Bae YH, Yin H. Stability issues of polymeric micelles. J Controlled Release. 2008;131(1):2-4. doi: 10.1016/j.jconrel.2008.06.015, PMID 18625275.

Barratt G. Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci CMLS. 2003; 60(1):21-37. doi: 10.1007/s000180300002, PMID 12613656.

Li Y, Kwon GS. Methotrexate esters of poly (ethylene oxide)-block-poly (2-hydroxyethyl-L-aspartamide). Part I: Effects of the level of methotrexate conjugation on the stability of micelles and on drug release. Pharm Res. 2000;17(5):607-11. doi: 10.1023/a:1007529218802, PMID 10888314.

Aliabadi HM, Shahin M, Brocks DR, Lavasanifar A. Disposition of drugs in block copolymer micelle delivery systems: from discovery to recovery. Clin Pharmacokinet. 2008;47(10):619-34. doi: 10.2165/00003088-200847100-00001, PMID 18783294.

Oh KS, Song JY, Cho SH, Lee BS, Kim SY, Kim K, Jeon H, Kwon IC, Yuk SH. Paclitaxel-loaded Ppluronic nanoparticles formed by a temperature-induced phase transition for cancer therapy. J Controlled Release. 2010;148(3):344-50. doi: 10.1016/ j.jconrel.2010.08.021, PMID 20797418.

Lee KE, Kim BK, Yuk SH. Biodegradable polymeric nanospheres formed by the temperature-induced phase transition in a mixture of poly (lactide-co-glycolide) and poly (ethylene oxide)− poly (propylene oxide)− poly (ethylene oxide) triblock copolymer. Biomacromolecules. 2002;3(5):1115-9. doi: 10.1021/bm020066h, PMID 12217061.

Gautier S, Grudzielski N, Goffinet G, De Hassonville SH, Delattre L, Jerojme R. Preparation of poly (D, L-lactide) nanoparticles assisted by amphiphilic poly (methyl methacrylate-co-methacrylic acid) copolymers. J Biomater Sci Polym Ed. 2001; 12(4):429-50. doi: 10.1163/156856201750195306, PMID 11436978.

Yuk SH, Oh KS, Koo H, Jeon H, Kim K, Kwon IC. Multi-core vesicle nanoparticles based on vesicle fusion for delivery of chemotherapic drugs. Biomaterials. 2011;32(31):7924-31. doi: 10.1016/j.biomaterials.2011.07.017, PMID 21784512.

Firestone MA, Wolf AC, Seifert S. Small-angle X-ray scattering study of the interaction of poly (ethylene oxide)-b-poly (propylene oxide)-b-poly (ethylene oxide) triblock copolymers with lipid bilayers. Biomacromolecules. 2003;4(6):1539-49. doi: 10.1021/bm034134r, PMID 14606878.

Oh KS, Kim K, Yoon BD, Lee HJ, Park DY, Kim EY, et al, Lee K, Seo JH, Yuk SH. Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy. Int J Nanomedicine. 2016;11:1077-87. doi: 10.2147/IJN.S100170, PMID 27042062.

Lu RM, Chang YL, Chen MS, Wu HC. Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials. 2011;32(12):3265-74. doi: 10.1016/j.biomaterials.2010.12.061, PMID 21306768.

Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751-60. doi: 10.1038/nnano.2007.387, PMID 18654426.

Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med. 2005;172(12):1487-90. doi: 10.1164/rccm.200504-613PP, PMID 16151040.

Haseeb MT, Khaliq NU, Yuk SH, Hussain MA, Bashir S. Linseed polysaccharides based nanoparticles for controlled delivery of docetaxel: design, in vitro drug release and cellular uptake. J Drug Delivery Sci Technol. 2019;49:143-51. doi: 10.1016/j.jddst.2018.11.009.

Park JH, Saravanakumar G, Kim K, Kwon IC. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev. 2010;62(1):28-41. doi: 10.1016/j.addr.2009.10.003, PMID 19874862.

Kozlov MY, Melik-Nubarov NS, Batrakova EV, Kabanov AV. Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules. 2000;33(9):3305-13. doi: 10.1021/ma991634x.

Alakhova DY, Zhao Y, Li S, Kabanov AV. Effect of doxorubicin/pluronic SP1049C on tumorigenicity, aggressiveness, DNA methylation and stem cell markers in murine leukemia. PloLOS OneNE. 2013;8(8):e72238. doi: 10.1371/journal.pone.0072238, PMID 23977261.

Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Controlled Release. 2008;130(2):98-106. doi: 10.1016/j.jconrel.2008.04.013, PMID 18534704.

Valle JW, Lawrance J, Brewer J, Clayton A, Corrie P, Alakhov V, Ranson M. A phase II, window study of SP1049C as first-line therapy in inoperable metastatic adenocarcinoma of the oesophagus. J Clin Oncol. 2004;22(14_suppl):4195. doi: 10.1200/jco.2004.22.90140.4195.

Pitto Barry A, Barry NPE. Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalization and clinical advances. Polym Chem. 2014;5(10):3291-7. doi: 10.1039/C4PY00039K.

Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3-6. doi: 10.1016/j.addr.2015.01.002, PMID 25579058.

Oh KS, Lee H, Kim JY, Koo EJ, Lee EH, Park JH, et al, Kim SY, Kim K, Kwon IC, Yuk SH. The multilayer nanoparticles formed by layer by layer approach for cancer-targeting therapy. J Controlled Release. 2013;165(1):9-15. doi: 10.1016/j.jconrel.2012.10.013, PMID 23103984.

Valle JW, Armstrong A, Newman C, Alakhov V, Pietrzynski G, Brewer J, Campbell S, Corrie P, Rowinsky EK, Ranson M. A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Invest New Drugs. 2011;29(5):1029-37. doi: 10.1007/s10637-010-9399-1, PMID 20179989.

Krylova OO, Melik‐Nubarov NS, Badun GA, Ksenofontov AL, Menger FM, Yaroslavov AA. Pluronic L61 accelerates flip–flop and transbilayer doxorubicin permeation. Chem Eur J.istry. 2003;9(16):3930-6. doi: 10.1002/chem.200204621, PMID 12916119.

Batrakova EV, Li S, Brynskikh AM, Sharma AK, Li Y, Boska M, Gong N, Mosley RL, Alakhov VY, Gendelman HE, Kabanov AV. Effects of pluronic and doxorubicin on drug uptake, cellular metabolism, apoptosis and tumor inhibition in animal models of MDR cancers. J Controlled Release. 2010;143(3):290-301. doi: 10.1016/j.jconrel.2010.01.004, PMID 20074598.

Sun H, Meng Q, Tang S, Su J, Yin Q, Chen L, Gu W, Yu H, Zhang Z, Wang S, Li Y. Inhibition of bbreast ccancer mmetastasis by ppluronic ccopolymers with mmoderate hhydrophilic–llipophilic bbalance. Mol Pharm. 2015;12(9):3323-31. doi: 10.1021/acs.molpharmaceut.5b00319, PMID 26220770.

Zhu P, Zhao N, Sheng D, Hou J, Hao C, Yang X, Zhu B, Zhang S, Han Z, Wei L, Zhang L. Inhibition of growth and metastasis of colon cancer by delivering 5-fluorouracil-loaded pluronic p85 copolymer micelles. Sci Rep. 2016;6:20896. doi: 10.1038/srep20896. PMID 26864651.

Cai Y, Sun Z, Fang X, Fang X, Xiao F, Wang Y, Chen M. Synthesis, characterization and anticancer activity of pluronic F68–curcumin conjugate micelles. Drug Delivery. 2016;23(7):2587-95. doi: 10.3109/10717544.2015.1037970, PMID 26066393.

Nguyen DH, Bae JW, Choi JH, Lee JS, Park KD. Bioreducible cross-linked Ppluronic micelles: pH-triggered release of doxorubicin and folate-mediated cellular uptake. J Bioact Compat Polym. 2013;28(4):341-54. doi: 10.1177/0883911513491642.

Xiong XY, Tao L, Qin X, Li ZL, Gong YC, Li YP, Yang YJ, Liu ZY. Novel folated Ppluronic/poly (lactic acid) nanoparticles for targeted delivery of paclitaxel. RSC Adv. 2016;6(58):52729-38. doi: 10.1039/C6RA09271C.

Kim JY, Choi WI, Kim YH, Tae G. Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials. 2013;34(4):1170-8. doi: 10.1016/j.biomaterials.2012.09.047, PMID 23122677.

Huang Y, Liu W, Gao F, Fang X, Chen Y. C (RGDyK)-decorated pluronic micelles for enhanced doxorubicin and paclitaxel delivery to brain glioma. Int J Nanomedicine. 2016;11:1629-41. doi: 10.2147/IJN.S104162, PMID 27143884.

Domingues C, Alvarez Lorenzo C, Concheiro A, Veiga F, Figueiras A. Nanotheranostic pluronic-like polymeric micelles: shedding light into the dark shadows of tumors. Mol Pharm. 2019;16(12):4757-74. doi: 10.1021/acs.molpharmaceut.9b00945, PMID 31633939.

Jo Y, Choi N, Kim K, Koo HJ, Choi J, Kim HN. Chemoresistance of cancer cells: requirements of tumor microenvironment-mimicking in vitro models in anti-cancer drug development. Theranostics. 2018;8(19):5259-75. doi: 10.7150/thno.29098, PMID 30555545.

Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, Li X, Xiong W, Li G, Zeng Z, Guo C. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8(5):761-73. doi: 10.7150/jca.17648, PMID 28382138.

Domingues CSDC, Serambeque BP, Laranjo Cândido MS, Marto CMM, Veiga FJB, Sarmento Antunes Cruz Ribeiro AB, Figueiras ARR, Botelho MFR, Dourado MARF AB. Epithelial‐mesenchymal transition and microRNAs: challenges and future perspectives in oral cancer. Head Neck. 2018;40(10):2304-13. doi: 10.1002/hed.25381, PMID 30120853.

Zhu X, Anquillare EL, Farokhzad OC, Shi J. Polymer- and protein-based nanotechnologies for cancer theranostics. In: Cancer theranostics. Elsevier; 2014. p. 419-36.

Jo SD, Ku SH, Won YY, Kim SH, Kwon IC. Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy. Theranostics. 2016;6(9):1362-77. doi: 10.7150/thno.15335, PMID 27375785.

Ma Y, Huang J, Song S, Chen H, Zhang Z. Cancer‐targeted nanotheranostics: recent advances and perspectives. Small. 2016;12(36):4936-54. doi: 10.1002/smll.201600635, PMID 27150247.

Giacomelli FC, Stepanek P, Schmidt V, Jager E, Jager A, Giacomelli C. Light scattering evidence of selective protein fouling on biocompatible block copolymer micelles. Nanoscale. 2012;4(15):4504-14. doi: 10.1039/c2nr30623a, PMID 22688571.

Oh KS, Han H, Yoon BD, Lee M, Kim H, Seo DW, Seo JH, Kim K, Kwon IC, Yuk SH. Effect of HIFU treatment on tumor-targeting efficacy of docetaxel-loaded Ppluronic nanoparticles. Colloids Surf B Biointerfaces. 2014;119:137-44. doi: 10.1016/j.colsurfb.2014.05.007, PMID 24881526.

Zhang Y, Feng L, Wang J, Tao D, Liang C, Cheng L, Hao E, Liu Z. Surfactant‐stripped micelles of near-infrared dye and paclitaxel for photoacoustic Iimaging guided photothermal‐chemotherapy. Small. 2018;14(44):e1802991. doi: 10.1002/smll.201802991:, 1802991PMID 30286285.

Nagy-Simon T, Potara M, Craciun AM, Licarete E, Astilean S. IR780-dye loaded gold nanoparticles as new near-infrared activatable nanotheranostic agents for simultaneous photodynamic and photothermal therapy and intracellular tracking by surface-enhanced resonant Raman scattering imaging. J Colloid Interface Sci. 2018;517:239-50. doi: 10.1016/j.jcis.2018.02.007, PMID 29428811.

Pellosi DS, Calori IR, de Paula LB, Hioka N, Quaglia F, Tedesco AC. Multifunctional theranostic pluronic mixed micelles improve targeted photoactivity of verteporfin in cancer cells. Mater Sci Eng C Mater Biol Appl. 2017;71:1-9. doi: 10.1016/j.msec.2016.09.064, PMID 27987651.

Sokolov IL, Cherkasov VR, Tregubov AA, Buiucli SR, Nikitin MP. Smart materials on the way to theranostic nanorobots: molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery. Biochim Biophys Acta Gen Subj. 2017;1861(6):1530-44. doi: 10.1016/j.bbagen.2017.01.027, PMID 28130158.

Oba M. Study on development of polymeric micellar gene carrier and evaluation of its functionality. Biol Pharm Bull. 2013;36(7):1045-51. doi: 10.1248/bpb.b13-00287, PMID 23811553.

Varela Moreira A, Shi Y, Fens MHAM, Lammers T, Hennink WE, Schiffelers RM. Clinical application of polymeric micelles for the treatment of cancer. Mater Chem Front. 2017;1(8):1485-501. doi: 10.1039/C6QM00289G.

Hua S, De Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790. doi: 10.3389/fphar.2018.00790, PMID 30065653.

Wong JKL, Mohseni R, Hamidieh AA, MacLaren RE, Habib N, Seifalian AM. Limitations in clinical translation of nanoparticle-based gene therapy. Trends Biotechnol. 2017;35(12):1124-5. doi: 10.1016/j.tibtech.2017.07.009, PMID 28822599.

Kadian R. Nanoparticles: a promising drug delivery approach. Asian J Pharm Clin Res. 2018;11(1):30-5. doi: 10.22159/ajpcr.2017.v11i1.22035.

Published

07-11-2021

How to Cite

RAIKAR, P. R., & M. DANDAGI, P. (2021). FUNCTIONALIZED POLYMERIC NANOPARTICLES: A NOVEL TARGETED APPROACH FOR ONCOLOGY CARE. International Journal of Applied Pharmaceutics, 13(6), 1–18. https://doi.org/10.22159/ijap.2021v13i6.42714

Issue

Section

Review Article(s)