DEVELOPMENT AND CHARACTERIZATION OF ORO-DISPERSIBLE TABLETS OF METFORMIN HYDROCHLORIDE USING CAJANUS CAJAN STARCH AS A NATURAL SUPERDISINTEGRANT

Authors

  • SONIA DHIMAN Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India https://orcid.org/0000-0002-0385-4808
  • RITCHU BABBAR Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India https://orcid.org/0000-0002-5418-7646
  • THAKUR GURJEET SINGH Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
  • SHIVANGI ANAND Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India https://orcid.org/0000-0001-6971-4907
  • ASHI MANNAN Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India https://orcid.org/0000-0003-0040-0103
  • SANDEEP ARORA Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India

DOI:

https://doi.org/10.22159/ijap.2022v14i1.42904

Keywords:

Metformin hydrochloride, Cajanus cajan starch, Oro-dispersible Tablets, Sodium starch glycolate, Superdisintegrant

Abstract

Objective: The aim of the research work was to explore the use of Cajanus cajan (Pigeon pea) polysaccharide as a superdisintegrant. The novel superdisintegrant has been evaluated for its action by incorporating it into orodispersible tablets of Metformin Hydrochloride.

Methods: Cajanus cajan starch was extracted from its seeds and superdisintegrant was developed by microwave modification of the extract. Various characterization tests such as gelatinization temperature, water absorption index, pH, and viscosity were used to identify the microwave-modified polysaccharide. The orodispersible tablets were made using a direct compression process employing varying concentrations of modified Cajanus cajan starch. Prepared tablets were tested for several pre and post-compression parameters and compared with a well-established synthetic superdisintegrant, sodium starch glycolate. The stability studies were conducted on an optimized formulation.

Results: Fourier transform infrared spectroscopy study showed that the drug had no interactions with the microwave-modified Cajanus cajan starch. SEM confirmed that Cajanus cajan starch granules exhibited intact granular structure in oval shapes and smooth surfaces. After microwave modification, the Cajanus cajan starch component lost its granular structure, which further led to the generation of surface pores and internal channels, causing overall swelling responsible for superdisintegrant activity. The optimized formulation (ODF5) containing 15 % modified Cajanus cajan starch performed better in terms of wetting time (22.21 s), disintegration time (53.3 s), and in vitro drug release (92%), as compared to formulation prepared by synthetic superdisintegrant (ODF1).

Conclusion: The present investigation concluded that modified Cajanus cajan starch has good potential as a superdisintegrant for formulating oro-dispersible tablets. Furthermore, modified Cajanus cajan starch is inexpensive, non-toxic and compatible in comparison with available synthetic superdisintegrants.

Downloads

Download data is not yet available.

References

Dhiman S, Singh TG, Dharmila PP. Mouth dissolving tablets: as a potential drug delivery system-a review. Int J Pharm Sci Rev Res. 2011;11:85-94.

Midha K, Nagpal M, Aggarwal G, Gurjeet Singh TG. Development of dispersible self-microemulsifying tablet of atorvastatin. Pharm Methods. 2015;6(1):09-25. doi: 10.5530/phm.2015.6.2.

Mahesparan VA, Bin Abd Razak FS, Ming LC, Uddin AH, Sarker MZI, Bin LK. Comparison of disintegrant-addition methods on the compounding of orodispersible tablets. Int J Pharm Compd. 2020;24(2):148-55. PMID 32196477.

Mushtaq M, Fazal N, Niaz A. Formulation and evaluation of fast-disintegrating tablets of flurbiprofen and metoclopramide. J Pharm Innov. 2021;16(3):419-38. doi: 10.1007/s12247-020-09455-z.

Ghosh D, Singh SK, Khursheed R, Pandey NK, Kumar B, Kumar R, Kumari Y, Kaur G, Clarisse A, Awasthi A, Gulati M, Jain SK, Porwal O, Bayrakdar E, Sheet M, Gowthamarajan K, Gupta S, Corrie L, Gunjal P, Gupta RK, Singh TG, Sinha S. Impact of solidification on micromeritic properties and dissolution rate of self-nanoemulsifying delivery system loaded with docosahexaenoic acid. Drug Dev Ind Pharm. 2020;46(4):597-605. doi: 10.1080/03639045.2020.1742143, PMID 32162980.

Wasilewska K, Ciosek Skibinska P, Lenik J, Srcic S, Basa A, Winnicka K. Utilization of ethylcellulose microparticles with Rupatadine fumarate in designing orodispersible minitablets with taste masking effect. Materials (Basel). 2020;13(12):2715. doi: 10.3390/ma13122715, PMID 32549213.

Swarnalatha N, Maravajhala V. Formulation, in vitro, and in vivo evaluation of taste-masked oral disintegrating tablets of fexofenadine hydrochloride using semisynthetic and natural super disintegrants. Int J Appl Pharm. 2021:99-108. doi: 10.22159/ijap.2021v13i5.41558.

Iurian S, Dinte E, Iuga C, Bogdan C, Spiridon I, Barbu Tudoran L, Bodoki A, Tomuţă I, Leucuţa SE. The pharmaceutical applications of a biopolymer isolated from Trigonella foenum-graecum seeds: focus on the freeze-dried matrix-forming capacity. Saudi Pharm J. 2017;25(8):1217-25. doi: 10.1016/j.jsps.2017.09.006, PMID 29204071.

Sankhyan A, Pawar PK. Metformin loaded non-ionic surfactant vesicles: optimization of formulation, effect of process variables and characterization. Daru. 2013;21(1):7. doi: 10.1186/2008-2231-21-7, PMID 23351604.

Wu N, Fu K, Fu YJ, Zu YG, Chang FR, Chen YH, Liu XL, Kong Y, Liu W, Gu CB. Antioxidant activities of extracts and main components of pigeonpea [Cajanus cajan (L.) Millsp.] leaves. Molecules. 2009;14(3):1032-43. doi: 10.3390/molecules14031032, PMID 19305357.

Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC. Wilt disease management and enhancement of growth and yield of cajanus cajan (L) var. manak by bacterial combinations amended with chemical fertilizer. Crop Prot. 2010;29(6):591-8. doi: 10.1016/j.cropro.2010.01.002.

Zu YG, Liu XL, Fu YJ, Wu N, Kong Y, Wink M. Chemical composition of the SFE-CO extracts from cajanus cajan (L.) huth and their antimicrobial activity in vitro and in vivo. Phytomedicine. 2010;17(14):1095-101. doi: 10.1016/j.phymed.2010.04.005, PMID 20576412.

Gulsun T, Akdag Y, Izat N, Cetin M, Oner L, Sahin S. Development and characterization of metformin hydrochloride- and glyburide-containing orally disintegrating tablets. Pharm Dev Technol. 2020;25(8):999-1009. doi: 10.1080/10837450.2020.1772290, PMID 32431206.

Thakur G, Singh A, Singh I. Chitosan-montmorillonite polymer composites: formulation and evaluation of sustained-release tablets of aceclofenac. Sci Pharm. 2015;84(4):603-17. doi: 10.3390/scipharm84040603, PMID 28656939.

Vanbillemont B, Everaert H, De Beer T. New advances in the characterization of lyophilised orally disintegrating tablets. Int J Pharm. 2020;579:119153. doi: 10.1016/j.ijpharm.2020.119153, PMID 32084575.

Dhaliwal SK, Talukdar A, Gautam A, Sharma P, Sharma V, Kaushik P. Developments and prospects in imperative underexploited vegetable legumes breeding: a review. Int J Mol Sci. 2020;21(24). doi: 10.3390/ijms21249615, PMID 33348635.

Sun X, Ohanenye IC, Ahmed T, Udenigwe CC. Microwave treatment increased protein digestibility of pigeon pea (Cajanus cajan) flour: elucidation of underlying mechanisms. Food Chem. 2020;329:127196. doi: 10.1016/j.foodchem.2020.127196, PMID 32516712.

Ogoda Onah J, Akubue PI, Okide GB. The kinetics of reversal of pre‐sickled erythrocytes by the aqueous extract of cajanus cajan seeds. Phytother Res. 2002;16(8):748-50. doi: 10.1002/ptr.1026, PMID 12458479.

Maninder K, Sandhu KS, Singh N. Comparative study of the functional, thermal and pasting properties of flours from different field pea (Pisum sativum L.) and pigeon pea (Cajanus cajan L.) cultivars. Food Chem. 2007;104(1):259-67. doi: 10.1016/j.foodchem.2006.11.037.

Hoover R, Swamidas G, Vasanthan T. Studies on the physicochemical properties of native, defatted, and heat-moisture treated pigeon pea (Cajanus cajan L) starch. Carbohydr Res. 1993;246(1):185-203. doi: 10.1016/0008-6215(93)84032-2.

Pawar H, Varkhade C, Jadhav P, Mehra K. Development and evaluation of orodispersible tablets using a natural polysaccharide isolated from cassia tora seeds. Integr Med Res. 2014;3(2):91-8. doi: 10.1016/j.imr.2014.03.002, PMID 28664083.

Sivadasan D, Sultan MH, Madkhali O, Javed S, Jabeen A. Formulation and in vitro evaluation of orodispersible tablets of fexofenadine hydrochloride. Trop J Pharm Res. 2020;19(5):919-25. doi: 10.4314/tjpr.v19i5.2.

Rao AHOP, Kumar RS, Kandukuri S, Ramya M. Optimization of starch glycolate as novel super disintegrant in the formulation of glipizide fast dissolving tablets through 23factorial design. Int J Appl Pharm. 2021;2021:244-51.

Gajera KG, Raval AG. Formulation and evaluation of orodispersible tablets of paliperidone. IJPBA. 2019;7(2):175-8. doi: 10.32553/ijpba.v7i2.116.

Subhranshu P. Formulation and evaluation of metoprolol succinate orodispersible tablets using directly compressible coprocessed excipient of Moringa Gum. AJP. 2020;14(1):1-8.

Vijayanand P, Patil JS, Reddy MV. Formulation and comparative pharmacokinetic evaluation of orodispersible tablets and films of nebivolol hydrochloride. J Pharmaceutical Investigation. 2015;45(2):237-47. doi: 10.1007/s40005-014-0169-5.

Dhiman S, Singh TG. Design and optimization of floating matrix tablets of famotidine by central composite design. Asian J Pharm Clin Res. 2012;5:45-9.

Kumari N, Sharma R. An immediate-release tablet of carvedilol with natural superdisintegrants fenugreek seed mucilage and synthetic superdisintegrants. Asian J Pharm Technol. 2020;10(3):156-64. doi: 10.5958/2231-5713.2020.00027.6.

Bala R, Sharma S, Ikgptu. Formulation and evaluation of fast dissolving tablet of aprepitant by using natural and synthetic superdisintegrants. Int J Appl Pharm. 2020:64-71. doi: 10.22159/ijap.2020v12i1.35222.

Huanbutta K, Yunsir A, Sriamornsak P, Sangnim T. Development and in vitro/in vivo evaluation of tamarind seed gum-based oral disintegrating tablets after fabrication by freeze-drying. J Drug Deliv Sci Technol. 2019;54. doi: 10.1016/j.jddst.2019.101298.

Tashan E, Karakucuk A, Celebi N. Development of nanocrystal ziprasidone orally disintegrating tablets: optimization by using design of experiment and in vitro evaluation. AAPS PharmSciTech. 2020;21(3):115. doi: 10.1208/s12249-020-01653-9, PMID 32296987.

Mazzo DJ. The ICH stability guideline. In: International stability testing. CRC Press; 2020. p. 1-13.

Singh K, Sharma S. Development and characterization of orodispersible tablets of propranolol hydrochloride using calcium cross-linked Cassia fistula gum and cross carmellose sodium. Int J App Pharm. 2020:160-9. doi: 10.22159/ijap.2020v12i4.37955.

Panda SA, Hemalatha N, Shankar PU, Baratam SR. Formulation and evaluation of orodispersible tablets (ODTS) of diclofenac sodium by using superdisintegrant from natural origin. Int J App Pharm. 2019;11(6):190-7. doi: 10.22159/ ijap.2019v11i6.33480.

Oliveira LJ, Veiga A, Stofella NCF, Cunha AC, da Graça T Toledo M, Andreazza IF, Murakami FSOliveira LJ, Veiga A, Stofella NCF, Cunha AC, da Graça T Toledo M, Andreazza IF, Murakami FS. Development and evaluation of orodispersible tablets containing ketoprofen. Curr Drug Deliv. 2020;17(4):348-60. doi: 10.2174/1567201817666200317122807., PMID: 32183668.

Manda P, Popescu C, Juluri A, Janga K, Kakulamarri PR, Narishetty S, Narasimha Murthy S, Repka MA. Micronized zaleplon delivery via orodispersible film and orodispersible tablets. AAPS PharmSciTech. 2018;19(3):1358-66. doi: 10.1208/s12249-017-0924-9. Epub 2018 Jan 19. PMID: 29352403.

Published

07-01-2022

How to Cite

DHIMAN, S., BABBAR, R., SINGH, T. G., ANAND, S., MANNAN, A., & ARORA, S. (2022). DEVELOPMENT AND CHARACTERIZATION OF ORO-DISPERSIBLE TABLETS OF METFORMIN HYDROCHLORIDE USING CAJANUS CAJAN STARCH AS A NATURAL SUPERDISINTEGRANT. International Journal of Applied Pharmaceutics, 14(1), 139–147. https://doi.org/10.22159/ijap.2022v14i1.42904

Issue

Section

Original Article(s)