PRE-FORMULATION STUDY ON 5-FLUOROURACIL AND CERTAIN LIPIDS FOR SOLID LIPID NANOPARTICLES PREPARATION

Authors

DOI:

https://doi.org/10.22159/ijap.2022v14i2.43491

Keywords:

5-fluorouracil, Glycerol monostearate, Stearic acid, Compritol®, Cholesterol

Abstract

Objective: The study's objective involved compatibility studies to investigate the possible interactions between 5-fluorouracil (5-FU) and four different lipids, and the most appropriate lipid was chosen. 

Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier Transform Infrared spectroscopy (FT-IR) are used for the compatibility study between 5-FU and several excipients as cholesterol, compritol®, stearic acid, and glycerol monostearate (GMS).

Methods: The physical mixture between 5-FU and each lipid was made by mixing of a certain amount of drug with the same amount of lipid. Drug lipid blended mixtures were made by solvent evaporation casting method. 5-FU alone, physical mixture and blended mixture were measured using Differential scanning calorimetry (DSC) to investigate melting peak of drug and effect of each lipid on this melting point, X-ray diffraction (XRD) to observe the crystalline or amorphous state of drug and Fourier Transform Infrared (FT-IR) to determine any chemical interaction between drug and these lipids by observing any shift happened to characteristic peaks related to the drug.

Results: 5-FU Tm (280.04 °C) peak appeared in drug-lipid physical mixtures with minor changes in position while this peak disappeared in 5-FU-compritol® and 5-FU-cholesterol blended mixture, indicating that the drug is molecular dispersed. XRD result showed that the crystalline structure of 5-FU was present in physical mixtures with four lipids, while in the 5-FU-compritol® blended mixture, the crystalline state of the drug was disappeared, confirming the DSC result.

The FT-IR spectrum of the 5-FU-physical mixtures with four lipids showed that all characteristic peaks of the drug appeared with minor changes. In the case of 5-FU-blended mixtures with mentioned lipids, no chemical interaction occurred between the drug and mentioned lipids except in the drug-stearic acid blended mixture, the N-H peak at 3136.25 cm-1 was disappeared due to amide ester formation.

Conclusion: The most appropriate lipids suitable for the preparation of 5-FU solid lipid nanoparticles were GMS and cholesterol.

Downloads

Download data is not yet available.

References

Bakkialakshmi S, Chandrakala D. Thermodynamic studies on the interaction of 5-fluorouracil with human serum albumin. Int J Pharm Pharm Sci. 2012;5:46-9.

Patel MN, Lakkadwala S, Majrad MS, Injeti ER, Gollmer SM, Shah ZA, Boddu SH, Nesamony J. Characterization and evaluation of 5-fluorouracil-loaded solid lipid nanoparticles prepared via a temperature-modulated solidification technique. AAPS PharmSciTech. 2014;15(6):1498-508. doi: 10.1208/s12249-014-0168-x, PMID 25035070.

Smith T, Affram K, Nottingham EL, Han B, Amissah F, Krishnan S, Trevino J, Agyare E. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci Rep. 2020;10(1):16989. doi: 10.1038/s41598-020-73218-6, PMID 33046724.

Wormann B, Bokemeyer C, Burmeister T, Köhne CH, Schwab M, Arnold D, Blohmer JU, Borner M, Brucker S, Cascorbi I, Decker T, de Wit M, Dietz A, Einsele H, Eisterer W, Folprecht G, Hilbe W, Hoffmann J, Knauf W, Kunzmann V, Largiadèr CR, Lorenzen S, Luftner D, Moehler M, Nöthen MM, Pox C, Reinacher-Schick A, Scharl A, Schlegelberger B, Seufferlein T, Sinn M, Stroth M, Tamm I, Trümper L, Wilhelm M, Wöll E, Hofheinz RD. Dihydropyrimidine dehydrogenase testing prior to treatment with 5-fluorouracil, capecitabine, and tegafur: A consensus paper. Oncol Res Treat. 2020;43(11):628-36. doi: 10.1159/000510258, PMID 33099551.

Nasir B, Muhammad Ranjha N, Hanif M, Abbas G. Reverse-phase high-performance liquid chromatography method for determination of 5-fluorouracil in rabbit plasma. Acta Pol Pharm. 2017;74(2):379-83. PMID 29624242.

Entezar Almahdi E, Mohammadi Samani S, Tayebi L, Farjadian F. Recent advances in designing 5-fluorouracil delivery systems: a stepping stone in the safe treatment of colorectal cancer. Int J Nanomedicine. 2020;15:5445-58. doi: 10.2147/IJN.S257700, PMID 32801699.

Shenoy VS, Gude RP, Murthy RSR. In vitro anticancer evaluation of 5-fluorouracil lipid nanoparticles using B16F10 melanoma cell lines. Int Nano Lett. 2013;3(1):1-9.

Bayat P, Pakravan P, Salouti M, Ezzati Nazhad Dolatabadi JEN. Lysine decorated solid lipid nanoparticles of epirubicin for cancer targeting and therapy. Adv Pharm Bull. 2021;11(1):96-103. doi: 10.34172/apb.2021.010, PMID 33747856.

Begum MY, Gudipati PR. Formulation and evaluation of dasatinib-loaded solid lipid nanoparticles. Int J Pharm Pharm Sci. 2018;10(12):14-20. doi: 10.22159/ijpps.2018v10i12.27567.

Wu DW, Huang CC, Chang SW, Chen TH, Lee H. Bcl-2 stabilization by paxillin confers 5-fluorouracil resistance in colorectal cancer. Cell Death Differ. 2015;22(5):779-89. doi: 10.1038/cdd.2014.170, PMID 25323586.

Moura EA, Correia LP, Pinto MF, Procópio JVV, de Souza FS, Macedo RO. Thermal characterization of the solid-state and raw material fluconazole by thermal analysis and pyrolysis coupled to GC/MS. J Therm Anal Calorim. 2010;100(1):289-93. doi: 10.1007/s10973-009-0473-x.

BH JG, Shankar S, Munisamy M, RS A, Sagar V. Development of pH-dependent chronomodulated delivery systems of 5-fluorouracil and oxaliplatin to treat colon cancer. Int J Appl Pharm. 2020;12(5):118-30.

Bannach G, Cervini P, Cavalheiro ÉTG, Ionashiro M. Using thermal and spectroscopic data to investigate the thermal behavior of epinephrine. Thermochim Acta. 2010;499(1-2):123-7. doi: 10.1016/j.tca.2009.11.012.

Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems– an overview. Acta Pharm Sin B. 2013;3(6):361-72. doi: 10.1016/j.apsb.2013.10.001.

Avery MA, Jennings White C, Chong WKM. Simplified analogs of the antimalarial artemisinin: synthesis of 6, 9-desmethylartemisinin. J Org Chem. 1989;54(8):1792-5. doi: 10.1021/jo00269a009.

Sonntag NOV. Glycerolysis of Fats and methyl esters-status, review and critique. J Am Oil Chem Soc. 1982;59(10):795A-802A. doi: 10.1007/BF02634442.

Mohamed AI, Samir N, El-Seidi EA, Hathout RMH, Abdel G, Awad S. Effect of certain pharmaceutical polymers on lomefloxacin activity against helicobacter pylori. Journal of Pharmaceuticals 2013;1(1):1-11.

Rojas Oviedo I, Retchkiman Corona B, Quirino Barreda CT, Cardenas J, Schabes Retchkiman PS. Solubility enhancement of a poorly water-soluble drug by forming solid dispersions using mechanochemical activation. Indian J Pharm Sci. 2012;74(6):505-11. doi: 10.4103/0250-474X.110576, PMID 23798775.

Tita B, Fulias A, Bandur G, Marian E, Tiţa D. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J Pharm Biomed Anal. 2011;56(2):221-7. doi: 10.1016/j.jpba.2011.05.017, PMID 21665404.

Slobozeanu AE, Bejan SE, Tudor IA, Mocioiu AM, Motoc AM, Romero Sanchez MD, Botan M, Catalin CG, Madalina CL, Piticescu RR, Predescu C. A review on differential scanning calorimetry as a tool for thermal assessment of nanostructured coatings. Manuf Rev. 2021;8:1. doi: 10.1051/mfreview/2020038.

Aburahma MH, Badr-Eldin SM. Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv. 2014;11(12):1865-83. doi: 10.1517/17425247.2014.935335, PMID 25152197.

Pignatello R, Ferro M, Puglisi G. Preparation of solid dispersions of nonsteroidal anti-inflammatory drugs with acrylic polymers and studies on mechanisms of drug-polymer interactions. AAPS PharmSciTech. 2002;3(2):E10. doi: 10.1208/pt030210, PMID 12916947.

Olukman M, Sanlı O, Solak EK. Release of anticancer drug 5-fluorouracil from different ionically crosslinked alginate beads. J Biomater Nanobiotechnology. 2012;3(4):469-79. doi: 10.4236/jbnb.2012.34048.

Mohammed AM, Osman SK, Saleh KI, Samy AM. In vitro release of 5-fluorouracil and methotrexate from different thermosensitive chitosan hydrogel systems. AAPS PharmSciTech. 2020;21(4):131. doi: 10.1208/s12249-020-01672-6, PMID 32405869.

Moghimipour E, Handali S. Utilization of thin film method for preparation of celecoxib loaded liposomes. Adv Pharm Bull. 2012;2(1):93-8. doi: 10.5681/apb.2012.013, PMID 24312776.

Vyas PM, Vasant SR, Hajiyani RR, Joshi MJ, editors. Synthesis and Characterization of cholesterol Nano particles by using w/o microemulsion Technique. AIP Conf Proc; 2010.

Rostamkalaei SS, Akbari J, Saeedi M, Morteza Semnani K, Nokhodchi A. Topical gel of metformin solid lipid nanoparticles: A hopeful promise as a dermal delivery system. Colloids Surf B Biointerfaces. 2019;175:150-7. doi: 10.1016/j.colsurfb.2018.11.072, PMID 30530000.

Chiang TC, Hamdan S, Osman MS. Urea-formaldehyde composites reinforced with Sago fibres analysis by FTIR, TGA, and DSC. Adv Mater Sci Eng. 2016;2016:1-10. doi: 10.1155/2016/5954636.

Hussain T, Saeed T, Mumtaz AM, Javaid Z, Abbas K, Awais A, Idrees HA. Effect of two hydrophobic polymers on the release of gliclazide from their matrix tablets. Acta Pol Pharm 2013;70(4):749-57. PMID 23923399.

Fang G, Li H, Chen Z, Liu X. Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials. Energy. 2010;35(12):4622-6. doi: 10.1016/j.energy.2010.09.046.

Kang JH, Yoo KH, Park HY, Hyun SM, Han SD, Kim DW, Park CW. Preparation and in vivo evaluation of a lidocaine self-nanoemulsifying ointment with glycerol monostearate for local delivery. Pharmaceutics. 2021;13(9):1468. doi: 10.3390/pharmaceutics13091468, PMID 34575544.

Reddy D. Formulation and in vitro evaluation of antineoplastic drug loaded nanoparticles as drug delivery system. Afr J Pharm Pharmacol. 2013;7(23):1592-604. doi: 10.5897/AJPP2013.3436.

Fouladian P, Kohlhagen J, Arafat M, Afinjuomo F, Workman N, Abuhelwa AY, Song Y, Garg S, Blencowe A. Three-dimensional printed 5-fluorouracil eluting polyurethane stents for the treatment of oesophageal cancers. Biomater Sci. 2020;8(23):6625-36. doi: 10.1039/d0bm01355b, PMID 33057525.

BA, DN, Veerabrahma K. Development of olmesartan medoxomil lipid-based nanoparticles and nanosuspension: preparation, characterization and comparative pharmacokinetic evaluation. Artif Cells Nanomed Biotechnol. 2018;46(1):126-37. doi: 10.1080/21691401.2017.1299160. PMID 28290712.

Jia LJ, Zhang DR, Li ZY, Feng FF, Wang YC, Dai WT, Duan CX, Zhang Q. Preparation and characterization of silybin-loaded nanostructured lipid carriers. Drug Deliv. 2010;17(1):11-8. doi: 10.3109/10717540903431586, PMID 19941406.

Yusefi M, Shameli K, Jahangirian H, Teow SY, Umakoshi H, Saleh B, Rafiee-Moghaddam R, Webster TJ. The potential anticancer activity of 5-fluorouracil loaded in cellulose fibers isolated from rice straw. Int J Nanomedicine. 2020;15:5417-32. doi: 10.2147/IJN.S250047, PMID 32801697.

Vasuki G, Selvaraju R. Growth and thermal characterization of choleaterol crystals. Int J Modn Res Rev. 2014;2(9):287-9.

Gupta U, Singh VK, Kumar V, Khajuria Y. Spectroscopic studies of cholesterol: fourier transform infra-red and vibrational frequency analysis. Materials Focus. 2014;3(3):211-7.

Cisse A, Peters J, Lazzara G, Chiappisi L. PyDSC: a simple tool to treat differential scanning calorimetry data. J Therm Anal Calorim. 2021;145(2):403-9. doi: 10.1007/s10973-020-09775-9.

Gardouh A. Design and characterization of glyceryl monostearate solid lipid nanoparticles prepared by high shear homogenization. BJPR 2013;3(3):326-46. doi: 10.9734/BJPR/2013/2770.

Wang M, Yuan Y, Gao Y, Ma HM, Xu HT, Zhang XN, Pan WS. Preparation and characterization of 5-fluorouracil pH-sensitive niosome and its tumor-targeted evaluation: in vitro and in vivo. Drug Dev Ind Pharm. 2012;38(9):1134-41. doi: 10.3109/03639045.2011.641565, PMID 22182601.

Jenning V, Thünemann AF, Gohla SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm. 2000;199(2):167-77. doi: 10.1016/s0378-5173(00)00378-1, PMID 10802410.

Souto EB, Mehnert W, Müller RH. Polymorphic behaviour of compritol 888 ATO as bulk lipid and as SLN and NLC. J Microencapsul. 2006;23(4):417-33. doi: 10.1080/02652040600612439, PMID 16854817.

Nasr M, Ghorab MK, Abdelazem A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta pharm sin B. 2015;5(1):79-88. doi: 10.1016/j.apsb.2014.12.001, PMID 26579429.

Fouad EA, Yassin AEB, Alajami HN. Characterization of celecoxib-loaded solid lipid nanoparticles formulated with tristearin and softisan 100. Trop J Pharm Res. 2015;14(2):205-10. doi: 10.4314/tjpr.v14i2.3.

Maher S, Santos A, Kumeria T, Kaur G, Lambert M, Forward P, Evdokiou A, Losic D. Multifunctional microspherical magnetic and pH-responsive carriers for combination anticancer therapy engineered by droplet-based microfluidics. J Mater Chem B. 2017;5(22):4097-109. doi: 10.1039/c7tb00588a, PMID 32264142.

Arafat M, Fouladian P, Wignall A, Song Y, Parikh A, Albrecht H, Prestidge CA, Garg S, Blencowe A. Development and in vitro evaluation of 5-fluorouracil-eluting stents for the treatment of colorectal cancer and cancer-related obstruction. Pharmaceutics. 2020;13(1):17. doi: 10.3390/pharmaceutics13010017, PMID 33374233.

Andalib S, Varshosaz J, Hassanzadeh F, Sadeghi H. Optimization of LDL targeted nanostructured lipid carriers of 5-FU by a full factorial design. Adv Biomed Res. 2012;1:45. doi: 10.4103/2277-9175.100147, PMID 23326776.

Stulzer HK, Rodrigues PO, Cardoso TM, Matos JSR, Silva MAS. Compatibility studies between captopril and pharmaceutical excipients used in tablets formulations. J Therm Anal Calorim. 2008;91(1):323-8. doi: 10.1007/s10973-006-7935-1.

Rodriguez I, Gautam R, Tinoco AD. Using X-ray diffraction techniques for biomimetic drug development, formulation, and polymorphic characterization. Biomimetics (Basel). 2020;6(1):1. doi: 10.3390/biomimetics6010001, PMID 33396786.

Tummala S, Satish Kumar MN, Prakash A. Formulation and characterization of 5-fluorouracil enteric-coated nanoparticles for sustained and localized release in treating colorectal cancer. Saudi Pharm J. 2015;23(3):308-14. doi: 10.1016/j.jsps.2014.11.010, PMID 26106279.

Sekhar EC, Rao KK, Raju RR. Chitosan/guar gum-g-acrylamide semi IPN microspheres for controlled release studies of 5-fluorouracil. J Appl Pharm Sci. 2011;1(8):199.

Eleraky EN, M Omar M, A Mahmoud H, A Abou Taleb H. Nanostructured lipid carriers to mediate brain delivery of temazepam: design and in vivo study. Pharmaceutics. 2020;12(5):451.

Freire FD, Aragao CFS, de Lima e Moura TFA, Raffin FN. Compatibility study between chlorpropamide and excipients in their physical mixtures. J Therm Anal Calorim. 2009;97(1):355-7. doi: 10.1007/s10973-009-0258-2.

Kelani KM, Rezk MR, Monir HH, ElSherbiny MS, Eid SM. FTIR combined with chemometric tools (fingerprinting spectroscopy) in comparison to HPLC: which strategy offers more opportunities as a green analytical chemistry technique for pharmaceutical analysis. Anal Methods. 2020;12(48):5893-907. doi: 10.1039/d0ay01749c, PMID 33290449.

Katharotiya K, Shinde G, Katharotiya D, Shelke S, Patel R, Kulkarni D, Panzade P. Development, evaluation and biodistribution of stealth liposomes of 5-fluorouracil for effective treatment of breast cancer. J Liposome Res. 2021:1-13. doi: 10.1080/08982104.2021.1905661, PMID 33847220.

Borderwala K, Rathod S, Yadav S, Vyas B, Shah P. Eudragit S-100 surface engineered nanostructured lipid carriers for colon targeting of 5-fluorouracil: optimization and in vitro and in vivo characterization. AAPS PharmSciTech. 2021;22(6):1-15216. doi: 10.1208/s12249-021-02099-3, PMID 34386888.

Butler RN, O'’Regan CB, Moynihan P. Reactions of fatty acids with amines. Part 2. Sequential thermal reactions of stearic (octadecanoic) acid with some 1,2- and 1,3-aminoalcohols and bis-amines. J Chemical Society, Perkin Transactions 1. 1978;(4)4:373-7. doi: 10.1039/p19780000373.

Raman S. Formulation and in vitro characterization of 5-fluorouracil and flavonoid dual lipid drug conjugates loaded self nanomulsifying drug delivery system for cancer targeting. IJPSR. 2019;10(7).

Miri B, Motakef Kazemi N, Shojaosadati SA, Morsali A. Application of a nanoporous metal-organic framework based on iron carboxylate as drug delivery system. Iran J Pharm Res. 2018;17(4):1164-71. PMID 30568676.

Kumar V, Kumar B, Deeba F, Bano S, Kulshreshtha A, Gopinath P, Sauraj, Kumar V, Kumar B, Deeba F, Bano S, Kulshreshtha A, Gopinath P, Negi YS. Lipophilic 5-fluorouracil prodrug encapsulated xylan-stearic acid conjugates nanoparticles for colon cancer therapy. International J Biological Macromolecules. 2019;128:204-13. doi: 10.1016/j.ijbiomac.2019.01.101, PMID 30684574.

Shenoy VS, Gude RP, Murthy RSR. In vitro anticancer evaluation of 5-fluorouracil lipid nanoparticles using B16F10 melanoma cell lines. Int Nano Lett. 2013;3(1). doi: 10.1186/2228-5326-3-36.

Nirbhavane P, Vemuri N, Kumar N, Khuller GK. Lipid nanocarrier-mediated drug delivery system to enhance the oral bioavailability of rifabutin. AAPS PharmSciTech. 2017;18(3):829-37. doi: 10.1208/s12249-016-0559-2, PMID 27350276.

Published

07-03-2022

How to Cite

ELKHATIB, M. M., ALI, A. I., ABDELRAZEK, S. A., & AL-BADRAWY, A. S. (2022). PRE-FORMULATION STUDY ON 5-FLUOROURACIL AND CERTAIN LIPIDS FOR SOLID LIPID NANOPARTICLES PREPARATION. International Journal of Applied Pharmaceutics, 14(2), 160–171. https://doi.org/10.22159/ijap.2022v14i2.43491

Issue

Section

Original Article(s)