• AYA YASEEN MAHMOOD ALABDALI University of Mashreq, College of Pharmacy, Baghdad, Iraq
  • MARWAH SAMI KZAR University of Mashreq, College of Pharmacy, Baghdad, Iraq
  • SASIKALA CHINNAPPAN Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
  • RAVISHANKAR RAM MANI Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
  • MALARVILI SELVARAJA Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
  • KOK JING WEN Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
  • LAI SALLY Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
  • FU WAI KUANG Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia



Infectious disease, Antimicrobial agents, Drug resistance, Nanoantibiotics


Despite the fact that we live in an era with unique and advanced technology for revealing underlying molecularly creating new drugs and disease mechanisms, infectious illnesses remain one of the world's major health issues. Antimicrobial agents now available against pathogenic microorganisms are insufficient to combat the problems posed by novel multidrug-resistant (MDR) infections. Antimicrobial drug restrictions are producing negative side effects and the development of multiple drug resistance. Drug resistance will necessitate the use of high-dose antibiotics, resulting in severe toxicity and the development of new medicines. Nanoantibiotics, a new type of antimicrobial agent that combines antimicrobial compounds with nanoparticles, has been created to solve these shortcomings. Additionally, previous reports stated that the pharmacokinetics profiles and have quicker ingestion in circulatory framework. In this subject, we will clarify the various sorts of nanoantibiotics, their instrument of activity, key targets and medication discharge components. We will likewise portray some significant microbial elements that will influence the activity of nanoantibiotics.


Download data is not yet available.


Simpkin VL, Renwick MJ, Kelly R, Mossialos E. Incentivising innovation in antibiotic drug discovery and development: progress, challenges and next steps. J Antibiot (Tokyo). 2017;70(12):1087-96. doi: 10.1038/ja.2017.124. PMID 29089600.

Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, Goossens H, Laxminarayan R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA. 2018;115(15):E3463-70. doi: 10.1073/pnas.1717295115, PMID 29581252.

Otaka E, Itoh T, Osawa S, Tanaka K, Tamaki M. Peptide analyses of a protein component, 50-8, of 50s ribosomal subunit from erythromycin-resistant mutants of Escherichia coli and Escherichia freudii. Mol Gen Genet. 1972;114(1):14-22. doi: 10.1007/BF00268742, PMID 4552494.

Piddock L, Garneau Tsodikova S, Garner C. Ask the experts: how to curb antibiotic resistance and plug the antibiotics gap? Future Med Chem. 2016;8(10):1027-32. doi: 10.4155/fmc-2014-0032, PMID 27327784.

Jamil B, Imran M. Factors pivotal for designing of nanoantimicrobials: an exposition. Crit Rev Microbiol. 2018;44(1):79-94. doi: 10.1080/1040841X.2017.1313813, PMID 28421881.

Dizaj SM, Lotfipour F, Barzegar Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2014;44:278-84. doi: 10.1016/j.msec.2014.08.031, PMID 25280707.

Gold K, Slay B, Knackstedt M, Gaharwar AK. Antimicrobial activity of metal and metal-oxide-based nanoparticles. Adv Therap. 2018;1(3):6003-9. doi: 10.1002/adtp.201700033.

Lasemi E, Navi F, Lasemi R, Lasemi N. Complications of antibiotic therapy and introduction of nanoantibiotics a textbook of advanced. Oral Maxillofac Surg. 2016;3.

Li J, Xie B, Xia K, Li Y, Han J, Zhao C. Enhanced antibacterial activity of silver doped titanium dioxide-chitosan composites under visible light. Materials (Basel). 2018;11(8):1403. doi: 10.3390/ma11081403, PMID 30103430.

Karuppiah Chandran P, Pambayan Ulagan M. Antimicrobial and anticancer activity of silver nanoparticles from edible mushroom: a review. Asian J Pharm Clin Res. 2017;10(3):37-40. doi: 10.22159/ajpcr.2017.v10i3.16027.

Ovais M, Zia N, Khalil AT, Ayaz M, Khalil A, Ahmad I. Nanoantibiotics: recent developments and future prospects. Frontiers in Clinical Drug Research- Anti-Infectives. 2019;15:158-82. doi: 10.2174/9781681086378119050006.

Saif S, Tahir A, Chen Y. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials (Basel). 2016;6(11):209. doi: 10.3390/nano6110209, PMID 28335338.

Pund S, Joshi A. Nanoarchitectures for neglected tropical protozoal diseases: challenges and state of the art. Nano Microscale Drug Deliv Syst Des Fabr. 2017:439-80.

Huh AJ, Kwon YJ. ’Nanoantibiotics’: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156(2):128-45. doi: 10.1016/j.jconrel.2011.07.002, PMID 21763369.

Dresselhaus MS, Dresselhaus G, Eklund PC, Rao AM. Carbon nanotubes BT-the physics of fullerene-based and fullerene-related materials. The Phys Fullerene-Based Fullerene Relat Mater. 2000:331-79.

Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4(10):5731-6. doi: 10.1021/nn101390x, PMID 20925398.

Dasari Shareena TP, McShan D, Dasmahapatra AK, Tchounwou PB. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nanomicro Lett. 2018;10(3):53. doi: 10.1007/s40820-018-0206-4, PMID 30079344.

Sondi I, Salopek Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177-82. doi: 10.1016/j.jcis.2004.02.012, PMID 15158396.

Joguparthi V, Anderson BD. Liposomal delivery of weak hydrophobic acids: enhancement of drug retention using a high intraliposomal pH. J Pharm Sci. 2008;97(1):433-54. doi: 10.1002/jps.21135, PMID 17918731.

Modi S, Anderson BD. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol Pharm. 2013;10(8):3076-89. doi: 10.1021/mp400154a, PMID 23758289.

Sikwal DR, Kalhapure RS, Rambharose S, Vepuri S, Soliman M, Mocktar C, Govender T. Polyelectrolyte complex of vancomycin as a nanoantibiotic: preparation, in vitro and in silico studies. Mater Sci Eng C Mater Biol Appl. 2016;63:489-98. doi: 10.1016/j.msec.2016.03.019, PMID 27040243.

Lindner LH, Hossann M. Factors affecting drug release from liposomes. Curr Opin Drug Discov Devel. 2010;13(1):111-23. PMID 20047152.

Saidykhan L, Abu Bakar MZBA, Rukayadi Y, Kura AU, Latifah SY. Development of nanoantibiotic delivery system using cockle shell-derived aragonite nanoparticles for treatment of osteomyelitis. Int J Nanomedicine. 2016;11:661-73. doi: 10.2147/IJN.S95885, PMID 26929622.

Hussein Al-Ali SH, El Zowalaty ME, Hussein MZ, Ismail M, Webster TJ. Synthesis, characterization, controlled release, and antibacterial studies of a novel streptomycin chitosan magnetic nanoantibiotic. Int J Nanomedicine. 2014;9:549-57. doi: 10.2147/IJN.S53079, PMID 24549109.

Assali M, Zaid AN, Abdallah F, Almasri M, Khayyat R. Single-walled carbon nanotubes-ciprofloxacin nanoantibiotic: strategy to improve ciprofloxacin antibacterial activity. Int J Nanomedicine. 2017;12:6647-59. doi: 10.2147/IJN.S140625, PMID 28924348.

Duan F, Feng X, Jin Y, Liu D, Yang X, Zhou G, Liu D, Li Z, Liang XJ, Zhang J. Metal–carbenicillin framework-based nanoantibiotics with enhanced penetration and highly efficient inhibition of MRSA. Biomaterials. 2017;144:155-65. doi: 10.1016/j.biomaterials.2017.08.024, PMID 28834764.

Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010;2(5):a000414. doi: 10.1101/cshperspect.a000414, PMID 20452953.

Delcour AH. Biochimica et biophysica acta outer membrane permeability and antibiotic resistance. BBA Proteins Proteomics. 2009;5:808-16.

Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30(10):499-511. doi: 10.1016/j.tibtech.2012.06.004. PMID 22884769.

Gilbert P, Collier PJ, Brown MRW. Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother. 1990;34(10):1865-8. doi: 10.1128/AAC.34.10.1865, PMID 2291653.

Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 1998;280(5361):295-8. doi: 10.1126/science.280.5361.295, PMID 9535661.

Smith AW. Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev. 2005;57(10):1539-50. doi: 10.1016/j.addr.2005.04.007, PMID 15950314.

Hou J, Miao L, Wang C, Wang P, Ao Y, Qian J, Dai S. Inhibitory effects of zno nanoparticles on aerobic wastewater biofilms from oxygen concentration profiles determined by microelectrodes. J Hazard Mater. 2014;276:164-70. doi: 10.1016/j.jhazmat.2014.04.048, PMID 24880618.

Forier K, Raemdonck K, De Smedt SC, Demeester J, Coenye T, Braeckmans K. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release. 2014;190:607-23. doi: 10.1016/j.jconrel.2014.03.055, PMID 24794896.

Wood TK, Knabel SJ, Kwan BW. Bacterial persister cell formation and dormancy. Appl Environ Microbiol. 2013;79(23):7116-21. doi: 10.1128/AEM.02636-13, PMID 24038684.

Bald D, Koul A. Advances and strategies in the discovery of new antibacterials for combating metabolically resting bacteria. Drug Discov Today. 2013;18(5-6):250-5. doi: 10.1016/j.drudis.2012.09.007, PMID 23032727.

Maurin M, Raoult D. Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrob Agents Chemother. 2001;45(11):2977-86. doi: 10.1128/ AAC.45.11.2977-2986.2001, PMID 11600345.

Oh YK, Nix DE, Straubinger RM. Formulation and efficacy of liposome-encapsulated antibiotics for therapy of intracellular Mycobacterium avium infection. Antimicrob Agents Chemother. 1995;39(9):2104-11. doi: 10.1128/AAC.39.9.2104, PMID 8540724.

Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol. 2010;8(9):634-44. doi: 10.1038/nrmicro2405, PMID 20694026.

Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65(13-14):1803-15. doi: 10.1016/j.addr.2013.07.011, PMID 23892192.

Sandhiya S, Dkhar SA, Surendiran A. Emerging trends of nanomedicine-an overview. Fundam Clin Pharmacol. 2009;23(3):263-9. doi: 10.1111/j.1472-8206.2009.00692.x, PMID 19527298.

Hetrick EM, Shin JH, Stasko NA, Johnson CB, Wespe DA, Holmuhamedov E, Schoenfisch MH. Bactericidal efficacy of nitric oxide-releasing silica nanoparticles. ACS Nano. 2008;2(2):235-46. doi: 10.1021/nn700191f, PMID 19206623.

Gupta M. Inorganic nanoparticles: an alternative therapy to combat drug-resistant infections. Int J Pharm Pharm Sci. 2021;13(8):20-31. doi: 10.22159/ijpps.2021v13i8.42643.

El-Ansary A, Al-Daihan S. On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol. 2009;2009:754810. doi: 10.1155/2009/754810.

Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJAM. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol. 2007;49(3):217-29. doi: 10.1016/j.yrtph.2007.07.006, PMID 17868963.



How to Cite




Review Article(s)

Most read articles by the same author(s)